
gcc x86 Assembly Quick Reference ("Cheat Sheet")

Instructions

Mnemonic Purpose Examples

mov
src,dest

Move data between registers, load immediate data into
registers, move data between registers and memory.

mov $4,%eax #
Load constant into
eax
mov %eax,%ebx #
Copy eax into ebx
mov %ebx,123 #
Copy ebx to
memory address
123

push src Insert a value onto the stack. Useful for passing arguments,
saving registers, etc.

push %ebp

pop dest Remove topmost value from the stack. Equivalent to "mov
(%esp),dest; add $4,%esp"

pop %ebp

call func Push the address of the next instruction and start executing
func.

call print_int

ret Pop the return program counter, and jump there. Ends a
subroutine.

ret

add
src,dest

dest=dest+src add %ebx,%eax #
Add ebx to eax

mul src Multiply eax and src as unsigned integers, and put the result in
eax. High 32 bits of product go into eax.

mul %ebx
#Multiply eax by
ebx

jmp label Goto the instruction label:. Skips anything else in the way. jmp post_mem
mov %eax,0 # Write
to NULL!
post_mem: # OK
here...

cmp a,b Compare two values. Sets flags that are used by the
conditional jumps (below). WARNING: compare is relative
to *last* argument, so "jl" jumps if b<a!

cmp $10,%eax

jl label Goto label if previous comparison came out as less-than.
Other conditionals available are: jle (<=), jeq (==), jge (>=),
jg (>), jne (!=), and many others.

jl loop_start # Jump
if eax<10

Stack Frame

(example without %ebp or local
variables)
Contents off esp

caller's variables 12(%esp)

Argument 2 8(%esp)

Argument 1 4(%esp)

Caller Return Address 0(%esp)

my_sub: # Returns first argument
 mov 4(%esp), %eax
 ret

(example when using %ebp and two
local variables)
Contents off ebp off esp

caller's variables 16(%ebp) 24(%esp)

Argument 2 12(%ebp) 20(%esp)

Argument 1 8(%ebp) 16(%esp)

Caller Return
Address

4(%ebp) 12(%esp)

Saved ebp 0(%ebp) 8(%esp)

Local variable 1 -4(%ebp) 4(%esp)

Local variable 2 -8(%ebp) 0(%esp)

my_sub2: # Returns first argument
 push %ebp # Prologue
 mov %esp, %ebp
 mov 8(%ebp), %eax
 mov %ebp, %esp # Epilogue
 pop %ebp
 ret

Constants, Registers, Memory

Constants MUST be preceeded with "$". "$12" means decimal 12; "$0xF0" is hex.
"$some_function" is the address of the first instruction of the function. WARNING: a bare "12",
"0xF0", or "some_function" dereferences the expression like it was a pointer!
Registers MUST be preceeded with "%". "%eax" means register eax.
Memory access (use register as pointer): "(%esp)". Same as C "*esp".
Memory access with offset (use register + offset as pointer): "4(%esp)". Same as C "*(esp+4)".
Memory access with scaled index (register + another register * scale): "(%eax, %ebx, 4)". Same
as C "*(eax+ebx*4)".

Registers

%esp is the stack pointer
%ebp is the stack frame pointer
Return value in %eax
Arguments are on the stack
Free for use (no save needed):
 %eax, %ebx, %ecx, %edx
Must be saved:
 %esp, %ebp, %esi, %edi

Common Errors

Segfault on innocent-looking code.
 Do you need to add "$" in front of a constant?
 Did you clean up the stack properly?
"

The Intel Software Developer's Manuals are incredibly long, boring, and complete--they give all the nitty-gritty details. Volume 1 lists the
processor registers in Section 3.4.1. Volume 2 lists all the x86 instructions in Section 3.2. Volume 3 gives the performance monitoring
registers. For Linux, the System V ABI gives the calling convention on page 39. Also see the Intel hall of fame for historical info.
Sandpile.org has a good opcode table.

http://www.intel.com/design/pentium4/manuals/index_new.htm
architecture.pdf
reference.pdf
os.pdf
sysV-abi.pdf
http://www.intel.com/museum/online/hist_micro/hof/index.htm
http://www.sandpile.org/ia32/index.htm

O. Lawlor, ffosl@uaf.edu
Up to: Class Site, CS, UAF

http://lawlor.cs.uaf.edu/%7Eolawlor/
mailto:ffosl@uaf.edu
file:///home/olawlor/docs/work/uaf/2005/cs301/www/
http://www.cs.uaf.edu/
http://www.uaf.edu/

	gcc x86 Assembly Quick Reference ("Cheat Sheet")
	Instructions
	Stack Frame
	Constants, Registers, Memory
	Registers
	Common Errors

