Teardown of the TP-Link Kasa Smart Wi-Fi Plug KP115

Benjamin Simmonds (5233344), UNSW Canberra

July 2021

Abstract

As the Internet of Things (IoT) continues to take the world by storm with an estimated
deployment footprint of 20 billion globally, security of these devices is a major area of concern,
with direct impacts to economic and citizen safety. To better understand the severity of the
situation, this paper presents the findings of a security analysis of a contemporary Smart Plug
device purchased only weeks ago from Bunnings Warehouse. The results were alarming, a useless
encryption scheme combined with no authentication, makes it a trivial exercise to gain complete
control over the device. Lack of regulations in this space, combined with strong economic drivers
for manufacturers to push IoT devices to the mass market quickly may be contributing factors.

Contents
Introduction 2
Aim 3
Methodology o 3
Tools and Equipment L 3
Observations 4
Port scan 5
TP-Link Device Firmware and Server Daemon 5
Decompiled Kasa Smart Android App 5
Conclusion 6
Appendix A: Enumeration of TP-Link Smart Home Protocol Commands 7
Appendix B: Programmatic Control using Python Script 8
Switch on e e e 8
Switch off e 8
Report energy use metricso Lo Lo 8
Show cloud details 9
Run an access point (AP) scan 9
Show the time e 9
List general information (including firmware version) 9
List active schedules L 9
Appendix C: nmap scan results 9
References 10

Introduction

This paper steps through a “tear down” (a methodical decomposition of a system) of the TP-Link
(Kasa) Smart Wi-Fi Plug Slim model KP115, which was purchased from Bunnings for about $20 in
July 2021.

Goals and questions:

o Evaluate firmware and software makeup
e Analyse the app-to-device network communication employed
— Specific protocols and ports
— The onboarding or discovery process
— The use of any WAN (cloud) based services
o Assess any potential security mechanisms used, such as encryption
e If any are found to exist, practically demonstrate vulnerabilities

Figure 1: The TP-Link/Kasa Smart Plug under assessment (Co (2021a))

TP-Link is the umbrella company of Kasa, a consumer device manufacturer with a focus on IoT
connected “smart devices”.

Some basic reconnaissance (TP-Link 2021) shows the “Kasa Smart Wi-Fi Plug Slim” is an actively
supported product line and markets many consumer desirable qualities such as ease of use and
setup, controllable from anywhere, voice control, an integrated timer for scheduling and even boasts
“Multiple Safety Guarantees”.

Aim
Methodology

The security assessment was structured based on the lifecycle of an industry based offensive method-
ology, by MITRE Corporation (Corporation (2021)).

1. Reconnaissance: research on functionality, software eco-system available, documentation or
patents on protocols, similar product lines, CVE databases

2. Resource development: create cloud account, install the android app, understand base functions,

reverse engineer android app, design test bench

Initial access: establish connectivity to the smart plug via rogue access point (evil twin)

Discovery: network service scanning

Collection: MITM AP network sniffing

Command and control: reverse engineer the TP-Link Smart Home protocol (TSHP) and

fabricate commands

The specifications (Co (2021c)) highlight the device operates over 2.4GHz 802.11 b/g/n. This
eliminated use of Bluetooth related protocols, focusing the design for intercepting network traffic to
Wi-Fi only. It turns out a majority of IoT devices deployed in the wild are Wi-Fi based. One theory
is that this is driven by cost saving measures by manufacturers, due to the ubiquity and affordability
of Wi-Fi (Junior et al. (2019)).

Smart Wi-Fi Plug Kasa Android App
3:send 4: receive 1b: send
Wse response command
1a: send
2: receive
command Wi-Fi Access Point
(Alfa + Thinkpad) P

All packets on
Alfa interface

—

Figure 2: High level design to intercept all network activity

o U W

Tools and Equipment
The security assessment made use of the following.
Equipment:

o A Kasa Smart Wi-Fi Plug Slim (KP115) — i.e., the device under evaluation
e Thinkpad X220 running Arch Linux

o Alfa AWUS036NHA USB Wi-Fi interface

e Google Pixel 4A Android Smartphone

Tools and software:

e The official Kasa Smart Android App

o A copy of the firmware HS110(US) _V1_151016.zip running on the device (Co (2021b))

e Wireshark and tcpdump

o binwalk

o tplink-smarthome.lua: a custom wireshark LUA dissector (Stroetmann and Esser (2018b))

e tplink_smartplug.py: a proof of concept that implements the weak XOR autokey encryption
used by the TP-Link Smart Home protocol (TSHP) called (Stroetmann and Esser (2018c))
o Firmware for the Atheros family of network devices (for the Alfa)

Figure 3: Equipment used (from left to right) an Alfa AWUS036NHA, the Kasa Smart Plug KP115
and Linux ThinkPad

After configuring the Atheros OS driver for the Alfa card, a Wi-Fi hotspot named “zeit8023” was
setup:

$ nmcli dev wifi hotspot ifname wlx00cOca991c64 ssid zeit8023 password 13371337

$ nmcli d

DEVICE TYPE STATE CONNECTION
wlx00c0ca991c64 wifi connected Hotspot
enp0s25 ethernet unavailable --

1o loopback unmanaged -

wlp3s0 wifi unmanaged --

Having installed the “Kasa Smart” Android app from the Google play store on my Google Pixel 4A,
the Google Pixel 4A Smartphone was connected to the hotspot, and TP-Link Smart Plug plugged
into a power socket. The smart plug booted up automatically, and launched the pairing process.

On the ThinkPad, I configured Wireshark to profile all traffic flowing over the Alfa card. Using the
“Kasa Smart” app on my Android I performed the following functions:

1. Switched the smart plug on.
Switched the smart plug off.
Switched the smart plug on.
Created a schedule to turn the switch off at 20:45
Switched the smart plug on.
Switched the smart plug off.

O oUW

Observations

Some high-level facts that were immediately drawn from the network capture:

e The MAC address of the smart plug is c0:06:c3:09:e0:61
e The IP address assigned to the smart plug is 10.42.0.126
e The IP address assigned to the Android Pixel Smartphone is 10.42.0.202

Port scan

After capturing the network trace, a port scan was conducted against the smart plug device, which
revealed port 9999 was open — see Annex: C nmap scan results.

Analysing the port 9999 related traffic in Wireshark revealed that many TCP conversations were
taking place between the Android Smartphone (the app) and the TP-Link Smart Plug. The message
data appeared to contain indecipherable binary data. Using CyberChef I attempted to decode the
binary data using several common encoding and encryption methods, to no avail.

TP-Link Device Firmware and Server Daemon

Running binwalk on a copy of the firmware running on the smart plug (Co (2021b)), showed it was
running a Linux 2.6 based kernel, and several other popular embedded sub-systems:

e U-Boot Bootloader 1.1.4
e Linux Kernel 2.6.31
o A squashfs based filesystem

Examining the contents of the filesystem, discovered the following files of interest:

 /bin/busybox v1.01 (2015.10.16-03:174-0000)
o /usr/bin/shd

It turns out (Stroetmann and Esser (2018a)) that /usr/bin/shd is the daemon server process
responsible for handling the port 9999 related traffic, and is a C binary:

shd: ELF 32-bit MSB executable, MIPS, MIPS32 rel2 version 1 (SYSV),
dynamically linked, interpreter /lib/1d-uClibc.so.0, corrupted section header size

At this point I decided to abandon reversing the smart plug shd server process any further.

Decompiled Kasa Smart Android App

Given the app is the command center for all its connected smart devices, I conceptualised that it
would need to encrypt the “command data” in whatever scheme was being used.

Using “Apk Extractor” on the Google Pixel Smartphone, I was able to extract the “Kasa Smart”
app’s apk package, and it turn it’s Java bytecode. With some help of security researchers (Stroetmann
and Esser (2018a)) I quickly discovered the key encryption function:

public static byte[] m7377b(byte[] bArr) {
if (bArr != null && bArr.length > 0) {
int i = -85;
for (int i2 = 0; i2 < bArr.length; i2++) {
byte b = (byte) (i ~ bArr[i2]);
i = bArr[i2];
bArr[i2] = b;

}

return bArr;

This simple encryption function uses the XOR bitwise operator (") and washes each byte of the
“command data”, starting with the hardcoded IV value of -85 (or 171). Each iteration, the next
cleartext data byte is XOR’ed with the previous cleartext byte (i.e. i = bArr[i2]). Involving the
actual data as the key is known as an autokey cipher (Foundation (2021)).

Given the use of a hardcoded nonce (or IV), this process can easily be reversed to decrypt the
message data.

As a proof of concept, a Python implementation tplink_smartplug.py and custom Wireshark LUA
dissector tplink-smarthome.lua (Stroetmann and Esser (2018a)) was used to conveniently decrypt
and analyse the autokey encrypted conversations taking place between the app and the smart plug.

Fla 4% Yea G2 Csplure Analpse Jadedis Reephory Winea Jooh Eeip
i sEmMERER R«esEF E5 |9 & I

B tep pot = = e B4 bphek yrasts e [«]
= -

S D wa we P
'} L

rp—
S 0. a4 Mk el kel min=S2S)h Les-tl, Anascript obect
3 1 T [R5, W] Sece-] Ackeid 1. O L=
——

pared | 1580 bdee]
wi: TR-Link fracel:d] Oob:B6:c3

Figure 4: Wireshark analysis using custom LUA dissector

Now able to decipher the commands, set out to enumerated each function that was invoked using the
smartphone app, and the resulting cleartext JSON message. See Annex: A Enumeration of TP-Link
Smart Home Protocol Commands.

Finally, an end-to-end demonstration of just how weak security (essentially non-existent) measures
are, invoked each function of the smart plug using Python. See Annex: B Programmatic Control
using Python Script.

Conclusion

The TP-Link (Kasa) Smart Plug demonstrates the delicate balance the industry currently faces
towards providing consumer convenient connected technology (i.e., IoT) while in a safe and secure
manner. As this paper shows, the security concerns are real.

On one end of the spectrum IoT manufacturers are under aggressive pressure to push products to
market with the hope of soaking up as much market share as possible, taking paths of least resistance
to “just get the job done”. On the other end, consumers, small and medium sized businesses are the
ones left exposed due to under-baked products.

What deems an appropriate level of “safe and secure”, what frameworks or standards could be

applied without burdening technology companies with unrealistic overheads while providing consumer
comprehendible advice. Mr Farrell linked (Home Affairs (2021)) to the thought-provoking initiative
the Australian government is actively working through, to address these exact issues.

Appendix A: Enumeration of TP-Link Smart Home Protocol
Commands

Switch on request:

{
"context": { "source": "46a4d58b-6279-432c-ae23-e115c2db8354" I},
"system": { "set_relay_state": { "state": 1 } }
}
Switch off request:
{
"context": { "source": "46a4d58b-6279-432c-ae23-e115c2db8354" I},
"system": { "set_relay_state": { "state": 0 } }
}
Scheduled “turn off” event:
{
"schedule": {
"get_rules": {
"rule_list": [
{
"id": "689CB20F436CEDEE16F8752FDFD26EBC" ,
"name": "Schedule Rule",
"enable": 1,
"wday": [1, 1, 1, 1, 1, 1, 1],
"stime_opt": O,
"smin": 1245,
"sact": O,
"eact": -1,
"repeat": 1
}
1,
"version": 2,
"enable": 1,
"err_code": O
}
}
}
System status response:
{
"system": {

"get_sysinfo": {
"sw_ver": "1.0.17 Build 210506 Rel.075231",
"hw_ver": "1.0",

"model": "KP115(AU)",
"deviceId": "8006D8042A39366BDFDD6E65504D85FF1EG4AFCTT",
"oemId": "33AF6F102C6172F2ESBD6CEAGS56CI9FF",
"hwId": "S8EDCE7F6CF8231678B90A6730D02BB41",
"rssi": -34,
"latitude_i": -354348,
"longitude_i": 1491063,
"alias": "Kasa smart plug",
"status": "new",
"obd_src": "tplink",
"mic_type": "IOT.SMARTPLUGSWITCH",
"feature": "TIM:ENE",
"mac": "CO0:06:C3:09:E0:61",
"updating": O,
"led_off": O,
"relay_state": 1,
"on_time": 31,
"icon_hash": "",
"dev_name": "Smart Wi-Fi Plug Mini",
"active_mode": "schedule",
"next_action": {
"type": 1,
"id": "689CB20F436CEDEE16F8752FDFD26EBC" ,
"schd_sec": 74700,
"action": 0O

},
"ntc_state": O,
"err_code": O

Appendix B: Programmatic Control using Python Script

Switch on

$ python3 ./tplink_smartplug.py -t 10.42.0.126 -c on
Sent: {"system":{"set_relay_state":{"state":1}}}
Received: {"system":{"set_relay_state":{"err_code":0}}}

Switch off
$ python3 ./tplink_smartplug.py -t 10.42.0.126 -c off
Sent: {"system":{"set_relay_state":{"state":0}}}

Received: {"system":{"set_relay_state":{"err_code":0}}}

Report energy use metrics

$ python3 ./tplink_smartplug.py -t 10.42.0.126 -c energy
Sent: {"emeter":{"get_realtime":{}}}
Received: {"emeter":{"get_realtime":{"current_ma":0,"voltage_mv":242327,"power_mw":0,"total_wh":0,"

Show cloud details

$ python3 ./tplink_smartplug.py -t 10.42.0.126 -c cloudinfo
Sent: {"cnCloud":{"get_info":{}}}
Received: {"cnCloud":{"get_info":{"username":"ben@bencode.net","server":"n-devs.tplinkcloud.com","t

Run an access point (AP) scan

$ python3 ./tplink_smartplug.py -t 10.42.0.126 -c wlanscan
Sent: {"netif":{"get_scaninfo":{"refresh":0}}}
Received: {"netif":{"get_scaninfo":{"ap_list":[],"err_code":0}}}

Show the time

$ python3 ./tplink_smartplug.py -t 10.42.0.126 -c time
Sent: {"time":{"get_time":{}}}
Received: {"time":{"get_time":{"year":2021,"month":9,"mday":9,"hour":21,"min":9,"sec":42,"err_code"

List general information (including firmware version)

$ python3 ./tplink_smartplug.py -t 10.42.0.126 -c info
Sent: {"system":{"get_sysinfo":{}}}
Received: {"system":{"get_sysinfo":{"sw_ver":"1.0.17 Build 210506 Rel.075231","hw_ver":"1.0","model

List active schedules

$ python3 ./tplink_smartplug.py -t 10.42.0.126 -c schedule
Sent: {"schedule":{"get_rules":{}}}
Received: {"schedule":{"get_rules":{"rule_list":[{"id":"689CB20F436CEDEE16F8752FDFD26EBC", "name":"S

Appendix C: nmap scan results

nmap -v -sV 10.42.0.126

Starting Nmap 7.80 (https://mmap.org) at 2021-09-07 21:04 AEST
NSE: Loaded 45 scripts for scanning.

Initiating Ping Scan at 21:04

Scanning 10.42.0.126 [2 ports]

Completed Ping Scan at 21:04, 0.00s elapsed (1 total hosts)
Initiating Parallel DNS resolution of 1 host. at 21:04

Completed Parallel DNS resolution of 1 host. at 21:04, 0.01s elapsed
Initiating Connect Scan at 21:04

Scanning 10.42.0.126 [1000 ports]

Discovered open port 9999/tcp on 10.42.0.126

Completed Connect Scan at 21:04, 1.84s elapsed (1000 total ports)
Initiating Service scan at 21:04

Scanning 1 service on 10.42.0.126

Completed Service scan at 21:04, 9.11s elapsed (1 service on 1 host)
NSE: Script scanning 10.42.0.126.

Initiating NSE at 21:04

Completed NSE at 21:04, 0.01s elapsed

Nmap scan report for 10.42.0.126

Host is up (0.054s latency).
Not shown: 999 closed ports
PORT STATE SERVICE VERSION
9999/tcp open abyss?

References

Co, TP-Link Technologies. 2021a. “Kasa Smart Wi-Fi Plug Slim Product Page.” September 2021.
https://www.tp-link.com/au/home-networking /smart-plug/kp105/.

2021b. “TP-Link Smart Plug Firmware Hs110(US)_V1_151016.zip.” September 2021.

https://static.tp-link.com/res/down/soft /HS110(US) V1 151016.zip.

. 2021c. “TP-Link Smart Plugs Kpl05 V2 Specifications.” September 2021. https://www.tp-
link.com/au/home-networking/smart-plug/kp105/#specifications.

Corporation, MITRE. 2021. “The MITRE ATT&CK Framework.” January 2021. https://attack.mit
re.org/.

Foundation, Wikimedia. 2021. “Autokey Cipher.” September 2021. https://en.wikipedia.org/wiki/
Autokey cipher.

Home Affairs, The Department of. 2021. “Strengthening Australia’s Cyber Security Regulations and
Incentives” July 2021. https://www.homeaffairs.gov.au/reports-and-publications/submissions-
and-discussion-papers/cyber-security-regulations-incentives.

Junior, Davino Mauro, Luis Melo, Hao Lu, Marcelo d’Amorim, and Atul Prakash. 2019. “A Study
of Vulnerability Analysis of Popular Smart Devices Through Their Companion Apps.” In 2019
IEEE Security and Privacy Workshops (SPW), 181-86. IEEE.

Stroetmann, L, and Esser T. 2018a. “Reverse Engineering the TP-Link Hs110.” July 2018. https:
/ /www.softscheck.com/en/reverse-engineering-tp-link-hs110/.

—— 2018b. “Tplink-Smarthome.lua.” July 2018. https://github.com/softScheck/tplink-
smartplug/blob/master/tplink-smarthome.lua.

———. 2018c. “Tplink_smartplug.py.” July 2018. https://github.com/softScheck/tplink-
smartplug/blob/master/tplink_ smartplug.py.

10

https://www.tp-link.com/au/home-networking/smart-plug/kp105/
https://static.tp-link.com/res/down/soft/HS110(US)_V1_151016.zip
https://www.tp-link.com/au/home-networking/smart-plug/kp105/#specifications
https://www.tp-link.com/au/home-networking/smart-plug/kp105/#specifications
https://attack.mitre.org/
https://attack.mitre.org/
https://en.wikipedia.org/wiki/Autokey_cipher
https://en.wikipedia.org/wiki/Autokey_cipher
https://www.homeaffairs.gov.au/reports-and-publications/submissions-and-discussion-papers/cyber-security-regulations-incentives
https://www.homeaffairs.gov.au/reports-and-publications/submissions-and-discussion-papers/cyber-security-regulations-incentives
https://www.softscheck.com/en/reverse-engineering-tp-link-hs110/
https://www.softscheck.com/en/reverse-engineering-tp-link-hs110/
https://github.com/softScheck/tplink-smartplug/blob/master/tplink-smarthome.lua
https://github.com/softScheck/tplink-smartplug/blob/master/tplink-smarthome.lua
https://github.com/softScheck/tplink-smartplug/blob/master/tplink_smartplug.py
https://github.com/softScheck/tplink-smartplug/blob/master/tplink_smartplug.py

	Introduction
	Aim
	Methodology
	Tools and Equipment

	Observations
	Port scan
	TP-Link Device Firmware and Server Daemon
	Decompiled Kasa Smart Android App

	Conclusion
	Appendix A: Enumeration of TP-Link Smart Home Protocol Commands
	Appendix B: Programmatic Control using Python Script
	Switch on
	Switch off
	Report energy use metrics
	Show cloud details
	Run an access point (AP) scan
	Show the time
	List general information (including firmware version)
	List active schedules

	Appendix C: nmap scan results
	References

