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ABSTRACT Industry 4.0 represents the fourth phase of industry and manufacturing revolution, unique
in that it provides Internet-connected smart systems, including automated factories, organizations, devel-
opment on demand, and ‘just-in-time’ development. Industry 4.0 includes the integration of cyber-physical
systems (CPSs), Internet of Things (IoT), cloud and fog computing paradigms for developing smart systems,
smart homes, and smart cities. Given Industry 4.0 is comprised sensor fields, actuators, fog and cloud
processing paradigms, and network systems, designing a secure architecture faces two major challenges:
handling heterogeneous sources at scale and maintaining security over a large, disparate, data-driven system
that interacts with the physical environment. This paper addresses these challenges by proposing a new threat
intelligence scheme that models the dynamic interactions of industry 4.0 components including physical
and network systems. The scheme consists of two components: a smart management module and a threat
intelligence module. The smart data management module handles heterogeneous data sources, one of the
foundational requirements for interacting with an Industry 4.0 system. This includes data to and from
sensors, actuators, in addition to other forms of network traffic. The proposed threat intelligence technique
is designed based on beta mixture-hidden Markov models (MHMMs) for discovering anomalous activities
against both physical and network systems. The scheme is evaluated on two well-known datasets: the CPS
dataset of sensors and actuators and the UNSW-NB15 dataset of network traffic. The results reveal that the
proposed technique outperforms five peer mechanisms, suggesting its effectiveness as a viable deployment
methodology in real-Industry 4.0 systems.

INDEX TERMS Industry 4.0, threat intelligence, cyber-attacks, cyber-physical systems (CPS), Internet of
Things (IoT), cloud, fog, beta mixture-hidden Markov models (MHMM).

I. INTRODUCTION
The emerging Industry 4.0 represents the fourth phase of
industry and manufacturing, promising to become the foun-
dation of smart systems, automated factories, and intelligent
buildings. Through data-driven decision-making and heavy
use of Cyber-Physical Systems (CPS), Industry 4.0 has the
potential to change many aspects of our daily lives. The
term Industry 4.0 was proposed by the German government
in 2011 as an impetus for shifting the manufacturing sec-
tor into the technological automation one [1], [2]. Earlier
industrial phases are mechanisation, electricity and Infor-
mation Technology (IT). The fourth phase of industry and
manufacturing enables automation in manufacturing, through
a combination of CPS, Cloud and Fog computing, Internet

of Things (IoT), data exchanges, big data, and autonomous
industrial techniques [3], [4].

The promise of change offered by Industry 4.0 is based
on pervasive and heterogeneous sensor networks, comput-
ing devices, and ubiquitous internet connectivity. Industry
4.0 is also heavily linked to smart machines, especially
in the area of manufacturing. Smart machines provide
increased manufacturing speed, faster recalibration, and
greater customisation, allowing for the development of new
business and partnership models to meet individual customer
requirements. This combination also increases profitability,
flexibility and reduces waste. One example of current indus-
trial development is themanagement of electricity storage [5],
integrating renewable energy and electrical grid usage using
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IoT technologies. Power balancing techniques have been
proposed to address the problems of dynamic pricing and
energy saving [1], [5]. Although Industry 4.0 systems have
the opportunity to improve the productivity and profitability
of organisations, they still face large challenges related to
cybersecurity and privacy [1]–[4].

The core of these challenges comes from differing stan-
dards in manufacturing and technology specifications. To be
successful, Industry 4.0 implementations require an architec-
ture design capable of unifying industry-based operational
technology platforms and traditional IT systems, each relying
on different protocols, security models and expectations for
confidentiality, integrity, and availability [2], [3], [5]. Secur-
ing Industry 4.0 demands proactive and reactive security
across all aspects; from sensor fields, the data they produce,
the ‘big data’ datasets and the systems that analyze them,
the network traffic produced, the mobile and workstations
interacting with them, and the actuators that interact with the
environment, individually and at scale. “Security by design”
must become an integral part of big data analytics to establish
secure Industry 4.0 systems.

Industry 4.0 is a system-of-systems, and security issues
in one area can detrimentally affect the system as a whole,
often in ways that are non-trivial and non-obvious. Concepts
such as data transparency must be developed into Indus-
try 4.0 implementations at all levels of the design process.
It is obvious that data transparency of Industry 4.0 faces
open issues in cybersecurity and privacy. There are sophis-
ticated attacking techniques that attempt to exploit Indus-
try 4.0 environments by hacking their physical and network
systems [3], [4]. Given the Industry 4.0 aims to univer-
sally integrate software and physical modules, there is a
heavy requirement for CPS within Industry 4.0. There
are potentially large consequences for successful cyber-
attacks, as actuators control and alter aspects of the physical
environment.

This introduces a contemporary cybersecurity issue: how
can secure cyber systems for heterogeneous sensors and
network traffic be designed [2], [4], [5]? To address this
question, this paper proposes a new threat intelligence
scheme based on Beta Mixture [6] and Hidden Markov
Models [7], [8] (MHMM) for discovering cyber adversaries
that attempt to expose physical and network layers of Industry
4.0 systems. The novelty of the proposed scheme includes
designing an architecture that shows how Industry 4.0 ele-
ments interact including CPS, IoT, and both Fog and Cloud
computing paradigms. More importantly, since Industry
4.0 comprises different data sources of sensor/actuators and
network nodes, we propose a data smart module that can pro-
cess these data sources. For reducing the data dimensionality,
we use the Independent Component Analysis (ICA) tech-
nique [9] for removing irrelevant features and improving the
MHMM performance.

In addition to the use of ICA to reduce sensor and net-
work dimensionality, this work proposes a Beta Mixture
Model (BMM) for fitting multivariate time series of physical

and network data. We propose using the BMM as it can
solve the boundary issue of Gaussian Mixture Model (GMM)
[6], [10]. The BMM is used as input of the HMM which
is utilised for threat intelligence by learning legitimate and
suspicious states and computing their posterior probabilities.
The minimum and maximum posteriors of normal and sus-
picious states are used as baselines for identifying known
and zero-day attacks. Thus, this mechanism solves the issue
of anomaly methods being unable to define attack types and
the issue of signature methods that cannot discover zero-day
attacks [6], [8].

Due to the fact that there are no publically accessible
Industry 4.0 datasets, this work trains and validates the pro-
posed technique using a combination of the power system
dataset of sensors and physical devices [11], [12] and UNSW-
NB15 dataset of network traffic [13], [14], as in aggregate
these forms of data are of the types that would be collected
within an Industry 4.0 deployment to build threat intelligence,
intrusion detection, and forensic systems.

The key contributions of the paper include the following.

• We propose a threat intelligence technique for recog-
nising cyber threats in Industry 4.0 based on BMM and
HMM, novel in this domain.

• We provide depth-statistical and mathematical theories
and applications that demonstrate the applicability of the
proposedmechanism in real-world Industry 4.0 systems.

• We evaluate the performance of the proposed mecha-
nism using physical and network data with comparisons
that reveal its superiority compared to five peer mecha-
nisms.

The remainder of the study is structured as follows.
Section II explains the background and related studies of
threat intelligence and Industry 4.0. Section III discusses
the proposed architecture of Industry 4.0 and how the het-
erogeneous data sources could be processed. The proposed
MHMM mechanism is detailed in Section IV. Section V
describes the empirical results and discussions. Finally,
we conclude the study with future directions of research that
are provided in Section VI.

II. BACKGROUND AND RELATED WORK
This section discusses the background of intelligent threat
mechanisms that have been utilised in these paradigms.
Moreover, the background and related studies discuss how
CPS, IoT, Cloud and Fog paradigms integrate into Industry
4.0 systems. Each of these sections will be discussed sepa-
rately.

A. THREAT INTELLIGENCE
Threat intelligence was defined as the process of obtaining
many sources and knowledge about cyber threats that can
be used for discovering malicious events for the purpose of
protecting organisations’ assets [15].

Threat Intelligence expands upon the concepts of intru-
sion detection, as it maintains the properties of monitoring
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and analyzing platforms and network traffic using, either a
signature or anomaly-based methodology, or a hybrid of the
two [6], [8]. A signature-based methodology monitors events
of host, mobiles, devices or network systems and matches
against a predefined blacklist of attack signatures if any rule
is fired. Signature-based methodologies can efficiently detect
existing cyber-attacks, but consume a high processing time
to check and update known attack rules and are inherently
incapable of discovering zero-day attacks where there is no
predefined rule [14], [16].

In contrast, an anomaly detection methodology creates a
profile of normal events and considers any deviations as
attacks. Although the methodology can detect known and
zero-day attacks with some limitations of false positive rates
(i.e., detecting normal instances as attacks), it cannot define
attack types such as Denial of Service (DoS) and Distributed
Denial of Service (DDoS) [6], [8], [14], [16].

Given this need, this work proposes a threat intelligence
architecture for Industry 4.0 systems, which learns statistical
state transitions of normal and attack events frommultivariate
time series that can discover known and unknown attacks and
their type based on estimating the posterior boundaries of
normal and attack categories. This model solves the issues
of existing anomaly and signature-based methods.

B. INDUSTRY 4.0 SYSTEMS
The components of Industry 4.0 are introduced in this section.
Specifically, this work outlines the technology platforms that
underpin Industry 4.0, which are Cyber-Physical Systems,
IoT, Cloud Computing and Fog Computing. Existing work
on threat intelligence at each component is presented and
critically analyzed.

1) CYBER-PHYSICAL SYSTEMS
Industry 4.0 foresees that the operations of physical facilities
are overseen by computing systems in the shape of Cyber-
Physical Systems (CPS). The term denotes a revolution on
how humans will interact with and control the physical world,
from the nano to large-scale systems. Industry 4.0 has amaz-
ing potential [8], including zero-energy buildings, abundant
agriculture yield, access to medical care, life assistance, and
reliable electricity. CPS, therefore, must operate dependably,
safely, and in real-time.

With the ubiquity of low-cost sensors and data storage,
coupled with increases in the speed and reliability of Internet
connectivity, the scale and breadth of data collection has
dramatically improved. However, data collection does not
itself provide meaning. There is a gap between the current
manufacturing model and the use of CPS. Current manufac-
turing systems require cognition and intelligence to convert
data into useful information for the right purpose.

For this reason, there is a need to open currently avail-
able systems and find mechanisms for integrating them into
a CPS model. The shift from traditional manufacturing to
CPS thereby presents a flow of smart sensors, data con-
version, cyber systems, cognition, and configuration [17].

The challenge with this movement is, while accessibility to
collect data increases, the cyber threat surface expands. CPS
adds several factors to the threat surface through the integra-
tion of physical components and communication infrastruc-
ture, all running on common protocols and systems.

2) INTERNET OF THINGS
The manifestation when devices and appliances are con-
nected to the Internet is termed as the Internet of Things
(IoT). When the Internet began to proliferate through web
services in the late 20th century, it was envisaged that objects
such as refrigerators would directly and automatically order
food through e-commerce. Instead, the path of develop-
ment for IoT has been built on the ubiquity of computing
through the proliferation of workstations, laptops, tablets and
mobile devices. Miniaturisation of computers, together with
the advancement of wireless networks, formed the ingredients
for the creation of new products.

Sensors became Internet-connected devices, such as IP
cameras and wearable devices. These mobile devices and
low-cost sensors are responsible for the growth of the IoT.
Current work indicates that cyber threats in the IoT layer
focuses on the authentication, authorisation and access con-
trol [21]. This study observed that heterogeneity [22] and
large datasets are changing how cyber threats can be detected.
The traffic pattern will continuously change, not only due
to increasing use of applications and new network proto-
cols [23], [24], but also malicious use of botnets [24], [25].
The uniqueness of this space when compared with exist-
ing systems means there is an identified need to develop
machine learning, statistical learning, and deep learning tech-
niques able to classify big data for analyzing IoT cyber
threats [26], [27].

3) CLOUD COMPUTING
The term Cloud Computing is a network of networks linked
using the internet, where virtual shared servers offer software,
infrastructure, platforms, services and other resources acces-
sible to customers anywhere at any time [28]. The Cloud
comprises a set of applications, platforms, and infrastruc-
ture connected to each other by the Internet for providing
them to customers on-demand. The Cloud offers an elastic
computing model, which permits firms and organisations to
use and adapt their IT needs over the Internet with a lower
cost of use, without any liability toward IT infrastructure and
maintenance [29].

Cloud Computing is one of the key drivers enabling
Industry 4.0 [30]. As the Cloud offers flexible, on-demand
centralized data storage and high-uptime services, it is a
highly relevant technology for storing and handling big data.
For example, storm forecasting was conducted in a short
time through data collection from disparate sensors and
previously developed datasets [31]. Data can be collected
from geographically dispersed sensors into a pooled resource
through publicly available APIs, via common network
protocols.
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One of the big challenges in contemporary threat detection
techniques stems from those in processing heterogeneous
data sources collected from software, platforms, and Fog
and Cloud computing systems [32]. This is exemplified in
recent studies of threat detection in Cloud computing which
discuss the proposed solutions separately at the application,
platform, and infrastructure layers [32]–[35]. For example,
web application threat detection was proposed as part of
software services [36], as detection at the application layer
is very effective compared to when threat detections were
deployed as other services. Delivering threat detection solu-
tions at different layers highlights inconsistencies in coor-
dinating these approaches and can also lead to incomplete
coverage across various intelligent systems. For example,
Iqbal et al. [37] [37] outline a system where threat detection
is installed as a hypervisor on a virtual machine, enhancing
the reliability of the computing systems being protected.
However, when threat detection solutions were integrated
at different layers as collaborating systems, they suffered
from scalability issues as the performance dropped with the
increased data volume [38]. On the other hand, scalable
collaborative threat detection solutions [29] did not provide
a centralized correlation handler to merge activities, and
thereby failed to detect large-scale distributed anomalies.
This is issue especially pertinent to Industry 4.0, given that
it does not have standards or architectures that demonstrate
how distributed nodes could be monitored.

4) FOG COMPUTING
While Cloud Computing places processing power, infras-
tructure, and software into central systems, Fog Computing
(or Fog) locates these capabilities closer to end users [33].
The drive behind the technology is the needs for low latency
services and mobility. With computing power geographically
located closer to end users, Fog applications such as gam-
ing and augmented reality can enjoy real-time services; and
moving vehicles can make use of streaming facilities. These
use-cases are not achievable with Cloud paradigms, given the
latency induced.

It is not foreseen that Fog Computing will cannibalize
Cloud Computing. Rather, there are mutual reciprocities
between the two, especially when it comes to data manage-
ment and analytics. The Fog focuses on localisation, Cloud
computing provides centralisation; hence, the former enables
low latency services, while the later administer globaliza-
tion. Due to these reciprocities, threat intelligence in the
Fog endows those issues that both the Cloud and the IoT
faces [39], [40], such as authentication and access control at
all different service layers. In addition, the Fog can be made
responsible for preserving privacy, especially in preserving
the usage and location of end devices [40]. For example, path
trajectory of an end-device can be inferred through analyzing
collective data, although a single location data was secured.

Because the Fog is well positioned to collect large amounts
of data, recent studies in detecting cyber threats in the Fog
employed machine learning techniques [41]. In addition,

the use of Markov models has been shown as a powerful
tool to detect threats in this problem area [42], [43], due
to their abilities to model state transition with probabilities.
AMarkovmodel is used to predict cyber threat patterns based
on the current known features [44].

III. INDUSTRY 4.0 SYSTEM ARCHITECTURE
This work proposes an Industry 4.0 architecture that clari-
fies the interconnections of CPS and IoT solutions and pro-
vides services to users and organisations, using both Cloud
and Fog paradigms. Based on this, it also outlines how the
proposed threat intelligence architecture can monitor and
analyze Industry 4.0 systems, recognizing cyber-attacks that
attempt to exploit their critical infrastructure and network
communications. As shown in Figure 1, devices of sensors
and actuators demand middleware tools that digitalise and
connect those devices to the Internet.

Once the devices are connected to the Internet, they are
transformed into IoT and/or CPS services that users and
organisations can lease as necessary, as opposed to purchas-
ing and maintaining their own physical systems. Cloud and
Fog Computing are the current two paradigms that offer the
services in terms of software, platforms, and infrastructures
to users and organisations [34]. It is obvious that there are
open-loop connections that link between physical and techno-
logical systems that have the potential to lead to cybersecurity
and data privacy issues [3], [45]. For identifying cyber threats
from Industry 4.0 environments, this work proposes a threat
intelligence architecture that concurrently monitors Cloud
and Fog destination nodes. The architecture includes three
main components of smart data management and analysis,
feature reduction, and new MHMM threat intelligence, as
explained below.

SMART DATA MANAGEMENT
Industry 4.0 systems are comprised of four layers; the phys-
ical layer, the sensor/actuator layer, the control layer and
the network layer [46]. The physical layer links directly to
the sensor/actuator layer. Sensors are used for estimating the
dynamics of the physical systems and capturing these systems
into the digital systems, while actuators are used for modi-
fying the environment to desired states and local controllers
to take suitable actions when needed. The network layer is
responsible for communicating sensor and actuator devices
using various protocols and services, such as IP, TCP/IP,
HTTP, and HTTPS.

Middleware tools, such as Zerynth Studio [47] and Node-
Red [48], are the interpreter between these devices and their
software to connect to the Internet and they offered as ser-
vices to users and organisations, ensuring effective com-
munications these layers. The middleware tools are utilised
for remotely monitoring and managing Cloud and/or Fog
services and recording the services’ data in log files. Con-
sequently, Industry 4.0 systems generate heterogeneous data
sources collected from log files of these devices (e.g., tem-
perature and power data using middleware) and network
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FIGURE 1. Proposed workflow for Industry 4.0 threat intelligence.

FIGURE 2. Proposed Smart data management.

traffic while providing these devices as services to users and
organisations, as presented in Figure 2.
The data of sensors and actuators is captured from the log

files of middleware tools, while network collection and Intru-
sion Detection System (IDS) tools (such as TCPDump and
Bro-IDS, respectively) are employed for capturing network
traffic and generating feature observations. For determin-
ing the reliability of our architecture, we used two publicly
labelled datasets that include malicious activities of physical
and network systems. The CPS power datasets [11], [12]
were used for collecting multiclass physical attacks against
collecting features of power sensors while the UNSW-NB15
[13], [14] are used for collecting features of network flows.

This is discussed further in Section V. Therefore, the features
of the two datasets can be recorded in a distributed and
scalable database for handling their heterogeneity.

For the implementation of this work, a MySQL Cluster
CGE [16] was utilised for the logging process due to the fact
that it can process extremely scalable and real-time databases
that allow a distributed architecture to handle intensive work-
loads while permitting the access by SQL or NoSQL APIs.
It can also process memory-optimised and disk-based tubu-
lars, data partitioning with load-balancing, and add nodes into
a running cluster to process online big data, which is the
goal of training and testing real-time threat intelligence for
Industry 4.0 systems.

DATA PRE-PROCESSING
Once features have been extracted from the two datasets, they
are then processed to be compatible input to the proposed
threat intelligence mechanism. Three data pre-processing
methods are applied to the two datasets to improve the per-
formance and scalability of the proposed mechanism. These
are feature conversion, feature reduction and feature normal-
isation, discussed below.

• Feature conversion- maps any categorical feature into
numeric features, for example, the protocol values of
TCP and UDP are converted into ordered numbers
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of 1 and 2, respectively. This is because the pro-
posed threat intelligence mechanism can only deal with
numeric features [6], [49].

• Feature reduction- removes irrelevant and redundant
features from the data collections. We utilise the ICA
technique [9], as it mines unidentified hidden compo-
nents from multivariate data, that is, linear mixtures of
some latent variables, using only the assumption that
the unknown components are mutually independent and
non-Gaussian from a statistical perspective. The ICA is
chosen, as it fits non-Gaussian data, which is the norm
for CPS/IoT and network data. It converts original fea-
tures into a set of independent attributes by maximising
the non-Gaussian data of new components. The general
ICA technique is given as [50]

x = As+ n (1)

where x is a m-dimensional feature observation, s is the
vector of assumed n-dimensional independent compo-
nents, A is a constant m × n mixing matrix with m ≥ n
and n a noise term. As we assume that CPS/IoT and
network data are logged and labelled in a noise-free
environment, the ICA model can be reformulated as

x = As (2)

and

s = Wx (3)

where W is the un-mixing matrix, called a mapping
function, for projecting x to s.
ICA makes the best guesses of A and s given x with the
constraint of maximising the non-Gaussian data so that
these independent components are suitable representa-
tions of the data. To solve (3), we describe the constraint
of maximising the non-Gaussian data as minimising the
mutual information (MI ) between n variables (si), where
i = {1, . . . , n}, as

MI (s1, s2, . . . , sm) =
∑
i

H (si)− H (sd ) (4)

whereH is the differential entropy. Although the mutual
information is usually non-negative, if it is zero, (4) is
expressed as∑

i

H (si) = H (so)

⇒

∑
i

∫
p(si) log p(si)dsi

=

∫
p(so) log p(so)dso (5)

and

p(sd ) = p(s1)p(s1) . . . p(sm) (6)

Since mutual information is the normal way of esti-
mating the independence of variables, it could be used

as the standard for determining the appropriate ICA
transformation. This declares that the selected features
are statistically independent by ranking the highest p(s)
of the features. The steps for applying the ICA technique
to choose the most relevant features of the CPS/IoT and
network data are presented in Algorithm 1.

Algorithm 1 Steps for Applying Fast-ICA to Reduce CPS
and Network Features
Input: Features (F) of CPS and Network data
Output: Relevant Features (RF)

1: set initial weight vector (W ) to generate each RF
2: compute w+ = Exg(wTx)–Eg′(wTx)w
3: compute derivatives of contrast functions (G) for

steps 4 and 5
4: g1(u) = tanh(a1.u)
5: g2(u) = u. exp(−u2/2)
6: compute w = w+/||w+||(normalisation step)
7: if not converged, go to step 2
8: (converged if norm (wnew–wold ) > ξ or norm (wold −
wnew) > ξ , where ξ = 0.0001)

9: apply above steps to generate K features of RF

• Feature normalisation- regulates features. After select-
ing the relevant features using the ICA technique, feature
normalisation is essential for scaling the values of each
feature into a certain range (e.g., [0, 1]) [6], [49]. This is
for eliminating the bias from the raw CPS and network
data without modifying their statistical characteristics.
Since our proposed threat intelligence uses a Beta mix-
ture model that which demands a certain interval for
each feature (X ) as input, the features of CPS and net-
work are normalised into the interval of [0, 1] by the
linear transformation in (7).

(Xnormalised ) = (x i − min(X )/max(X )− min(X )) (7)

IV. MIXTURE-HMM THREAT INTELLIGENCE TECHNIQUE
This section explains the mathematical theories behind
the proposed Mixture-HMM mechanism. The training and
testing phases for detecting Industry 4.0 threats are also
described. Moreover, the dynamics of Industry 4.0 layers are
described using the proposed mechanism.

A. BETA MIXTURE-HIDDEN MARKOV
THREAT INTELLIGENCE
As CPS and network data are comprised of multivariate time
series data, it is complex to build a learning model with these
time series features given that they dynamically change over
time. Mixture Hidden Markov Models (MHMM) are new
variants that have been proposed for determining and visual-
ising multiple parallel sequences for each label (e.g., normal
and attacks). MHMM is usually applied to the Gaussian
Mixture Model (GMM) when the number of mixture com-
ponents is known, and edges of observed data are unbounded
boundary (i.e., ]−∞,∞[ ) [6], [10]. However, we statistically
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FIGURE 3. Proposed Mixture Hidden Markov mechanism for detecting Industry 4.0 threats.

observed that CPS and network data can be signified in a
semi-bounded interval ([0,N ], N is an asymmetric number)
for any feature in the datasets.

For solving the unbounded property of GMM, we pro-
pose using the BMM as BMM is more flexible than GMM
and fits continuous variables that include a finite interval
([a, b], a and b ∈ R), such as [0, 1] which is the case for
Industry 4.0 data. BMM has been previously used as a clas-
sifier, performing better than a GMM classifier in detecting
human skin colors and speech spectra. The authors have used
it in a previous study [6] to fit network data under bounded
distributions and the results revealed that BMM can act better
than GMM and Dirichlet Mixture Models (DMM). In this
study, the BMM is used for clustering multivariate features
of CPS and network data into a representative feature that has
the potential characteristics of the raw feature vectors. After
this has completed, the HMM is used the output of BMM as
input for estimating the posterior probabilities and determin-
ing underlying latent structures for identifying unobservable
states, either normal or abnormal, as shown in Figure 3.
For estimating the BMM for each feature vector, the Prob-

ability Density Function (PDF) is estimated by

f (X |πk , vk , ωk ) =
K∑
k=1

πkBeta(X , vk , ωk )

=

N∑
n=1

πn

K∏
k=1

Beta(xk , vk , ωk ) (8)

Where X denotes feature vectors (X = {x11, . . . ., xKN }),
such that N is the number of vectors and K is the number of
components/relevant features selected by the ICA technique
in Section III. (π = {π1, . . . ., πK }, υ = {υ1, . . . , υK },
ω = {ω1, . . . , ωK }) are the three parameters of the BMM. π
is the mixing weight, where

∑K
k=1 πk = 1, 0 < π < 1), and

υk andωk are the shape parameters of the beta distribution for
each feature xk . The EM algorithm is utilised for estimating
these parameters as detailed in [10].

The HMM technique is widely used in the domains of
speech recognition and network traffic, as it is a resilient
discrete time-series technique that declares a probability dis-
tribution over vectors constrained on a particular number

of hidden states [7], [8]. This study applies HMM under
BMM for fitting and detecting abnormal behaviors of CPS
and network features selected by the ICA technique and
conditioned on two latent states of normal and attack.MHHM
has two assumptions to be built on BMM; (1) the hidden state
probability p(s) at time (t) only relies on the previous state
(st − 1) at time (t − 1), and (2) the feature vector (x1:k (t))
under BMM represents one of the two hidden states: normal
(SN ) or attacks (SA). The joint probability of vectors and
states is estimated by

P (S1:T ,X1:T ) =
T∏
t=1

P (xt | st)
T∏
t=2

P (st | st−1)P (s1) (9)

The three HMM parameters of the initial, emission and
transition probabilities are estimated based on the BMM,
as follows.

• The initial vector (I [1 : S]) is the probabilities of starting
hidden states, computed as

I [1 : S] = p(s1, .., sS ) (10)

where s refers to the model states, as we have two states
of normal and attack, we fairly initiate their probabilities
as [0.5 (normal), 0.5 (attack)].

• The emission BMMmatrix (A[si, xi]) is the probabilities
of the hidden state (s) emitting the observed feature
vectors that are estimated using the PDF of BMM.

A[si, xi] = p(f (xi|πi, vi, ωi)|si) (11)

where f (xi|πi, vi, ωi) denotes the PDF of feature vectors
using (8).

• The transition BMMmatrix (B[si, si−1] )is the probabil-
ity of moving from the state (st−1) to the coming state
(st ).

B[si, si−1] = p(st |st−s) (12)

The posterior probability (post) measure of each vector
estimates the dependencies between prior and likelihood data
distributions (i.e., posterior ≈ prior ∗ likelihood). This
measure is applied to make a baseline the find the dynamic
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changes of normal and attack states over time. It is computed
with the following:

post = p(S1:N |I1:N ,A1:N ) = p(s1)p(f (xi|πi, vi, ωi)|s1)

×

I∏
i=1

(p(si|si−1)× p(f (xi|πi, vi, ωi)|si)) (13)

B. TRAINING AND TESTING PHASES
In the training phase, theMHHMmechanism is learned using
normal and attack vectors (V training

1:N ) in order to produce a
threat model that includes wide variations of posterior proba-
bilities of the two states of normal (postnormal) and attacks
(postattacks). The prof training includes the estimated param-
eters of the BMM (πk , vk , ωk ), and the minimum normal
posterior (min(postnorml)), and maximum normal posterior
(max(postnorml)) that will be used as a baseline of attack
detection in the testing phase. The process of building the
profile is described in Algorithm 2.

Algorithm 2 The Steps of the Training Phase

Input: training vectors (V normal
1:N ), class label=

{normal/attack}
output: training profile (prof training)

1: for each vector i all V normal
1:N do

2: if (class label == normal) then
3: BMMnormal

← estimate the BMM parametrs
(πk , υk , ωk ) for normal as in [10].

4: postnorml← compute the postnorml using (13) based
on step 2.

5: else
6: BMMattacks

← estimate the BMM parametrs
(πk , υk , ωk ) for attacks.

7: postattacks ← compute the postattacks using (13)
based on step 2.

8: end if
9: end for

10: [min(postnorml), max(postnorml)] estimate the minimum
and maximum postnormal .

11: prof training ← {υk , ωk , µk ,min(postnorml),
max(postnorml)}

13: return (prof training)

In the testing phase, the posterior probability (post testing)
of the observed vector (V testing) is estimated using (13)
with the same normal BMM parameters (υk , ωk , µk ) of the
prof normal . The purpose of using the same normal parameters
that if the value of post testing locates at the normal boundaries
[min(postnorml),max(postnorml)], the observed vector will be
a normal vector, otherwise an abnormal one, as the process of
this phase is provided in Algorithm 3.
The proposed threat intelligence mechanism is more effec-

tive than the typical anomaly methodology, which creates a
profile from normal activities only and considering deviations
as attacks. The limitation of a typical anomaly methodology
is unable to define attack types as there is no information

Algorithm 3 The Process of the Testing Phase

Input: observed vector (vtesting), training profile
(prof training)
output: normal or attack vector

1: post testing←estimate the post testing using equation
13 based on the normal BMM parameters.

2: if (post testing ≥ min(postnorml)) || (post testing ≤
max(postnorml)) then

3: return normal
4: else
5: return attack
6: end if

about the types of attack in the training phase. However,
the proposed method can estimate minimum and maximum
posterior probabilities using steps 6 and 7 in algorithm 2 for
each attack type. Thus, this mechanism can define zero-day
attacks as anomaly methods and effectively detect existing
attack types based on one condition of the minimum and
maximum posterior of each attack types rather than many
signature rules for each type, as in signature models that take
a long processing time with regular updates.

C. INDUSTRY 4.0 DYNAMICS USING MHMM
As Industry 4.0 systems are comprised of several lay-
ers, this work presents a mathematical model based on
MHMM for demonstrating the complexity of these sys-
tems. Mathematically speaking, to formulate the dynamic
changes of the system states over time, this work assumes
that network services should be monitored to recog-
nise abnormal activities. Each of which is connected to
a physical layer (PL = {PL1,PL2, . . . .,PLN }), sen-
sor/actuator layer (SL = {SL1, SL2, . . . ., SLN }), network
layer (NL = {NL1,NL2, . . . .,NLN }) and control layer (CL =
{CL1,CL2, . . . .,CLN }, where N is number of states in the
system), as presented in Figure 4.

FIGURE 4. Modelling Industry 4.0 dynamics using MHMM.

These layers interact together to do a specific function over
time, and the data collected from these layers can be repre-
sented using the proposed MHMM technique. For example,
assume that there are two states in a system S = {SN , SA},
where SN refers to the normal state and SA refers to the attack
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FIGURE 5. (A) shows 120 feature vectors from the CPS dataset, (B) and (C) represent the normal and attack
posterior probabilities of the normal and attack states.

state. To represent the dynamics of normal and attack states,
we compute the posterior probabilities for 120 samples from
the power system dataset as plotted in Figure 5 (A, B and C).
In Figure 5-(A), the normalised features for the 120 vectors
are plotted. It is clear that the values of the features consid-
erably vary in the normalised range of [0, 1]. The vectors
include normal and attack states in which their posterior
probabilities are computed using (13). It is observed that the
majority of the normal posterior probabilities are located in
the range of [0.5, 1] as shown in Figure 5-(B), whilst the he
majority of the attack posterior probabilities are specified in
the range of [0, 0.5], as presented in Figure 5-(C).
As shown, the MHMM mechanism makes considerable

variations between normal and attack posterior probabilities.
The reason behind these variations is that using BMM in a
confidence interval of [0, 1] makes a clear difference in the
normal boundaries. More importantly, fusing the relevant fea-
tures using the PDF of BMM into one representative feature
of the HMM technique leads to specify the normal variances
which are too close from each other, while they consider-
ably vary from attack vectors. This reveals that BMM and
lower-upper normal posterior probabilities can improve the
performance of detecting cyber-attacks from both CPS/IoT
and network data, as explained in Section V-D.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. DESCRIPTION OF DATASETS
Two publicly available datasets were employed to eval-
uate the performance of the proposed threat intelligence

architecture; the CPS power system dataset [11], [12] and
the UNSW-NB15 dataset [13], [14]. The CPS power system
dataset consists of 37 scenarios: natural events (8), no events
(1) and intrusion events (28) that include Remote tripping,
Relay, and Data injection attacks. The process of establishing
this dataset is depicted in Figure 6. The figure shows two
power generators, G1 and G2, connected to each other. There
are four breakers in between these generators, BR1 to BR4.
Each breaker is controlled by an IoT device R, hence, there
are four devices labelled R1 to R4. They are responsible to
provide remote protection mechanisms to control the break-
ers, such as automatically switch off the breaker it attaches to
upon signs of faults. It is possible as well tomanually override
the program. All event detected by these R devices are sent
to be saved as syslog in a logging system.

The UNSW-NB15 contains a large instance of recent,
legitimate and malicious network features which allow
sound analysis of the proposed technique. The UNSW-NB15
dataset contains about 100 Gigabytes of data representing
2,540,044 observations. Each observation is characterized
through 47 features and a label signifying one of ten pos-
sible classes: a normal class and nine malicious categories
(i.e., Analysis, Backdoors, DoS, Exploits, Generic, Recon-
naissance, Fuzzers for anomalous activity, Shellcode, and
Worms).

B. EVALUATION CRITERIA AND EXPERIMENTAL DESIGN
To measure the performance of the technique, the
investigations on the two datasets employed Accuracy,
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FIGURE 6. Testbed of generating CPS power system dataset.

Detection Rate (DR) and False Alarm Rate (FAR). These
measures depend on four terms: True Positive (TP), True
Negative (TN ), False Negative (FN ) and False Positive (FP).
TP and TN are the number of suspicious and actual instances
correctly classified as abnormal and normal, respectively. FP
and FN are the numbers of actual and suspicious instances
incorrectly defined as abnormal and normal, respectively.
Henceforth, the performance metrics are defined as fol-
lows [6].
• TheAccuracy is the percentage of all normal and attack
vectors that are correctly classified, that is,

Accuracy =
(TP+ TN )

(TP+ TN + FP+ FN )
(14)

• The detection rate (DR) is the percentage of correctly
detected attack vectors, that is,

DR =
TP

(TP+ FN )
(15)

• The false positive rate (FPR) is is the percentage of
incorrectly detected attack vectors, that is,

FPR =
FP

(FP+ TN )
(16)

The proposed technique was developed using the ‘R pro-
gramming language’ on Linux Ubuntu 16.04 LTSwith 16 GB
RAM on an i7 CPU processor. To conduct the experiments on
each dataset, random samples were extracted from the two
datasets with different sample sizes of between 100,000 and
300,000 (s). For each sample size, each normal sample is
almost 60-70% of the total size, with some instances were
used for training the technique and others were employed for
testing it. The performance of the technique was obtained
by averaging 5-fold cross-validation experiment results to
correctly adapt the MHMM’s parameters and measure its
effectiveness for recognsinig attack observations.

C. ESTIMATION OF FEATURE REDUCTION
For evaluating the performance of the proposed mechanism,
we selected the highest variances of nine features using the
ICA technique explained in Section III from the power system
and UNSW-NB15 datasets, as listed in Table 1.

TABLE 1. Features selected from the power system and
UNSW-NB15 dataset.

The variation between features and their label is an accu-
rate estimate, which assists the proposedMHMMmechanism
in identifying the label either normal or attack. The box
plot, which is a standardised representation of exhibiting
the distribution of data using five statistical measures of
minimum, first quartile, median, third quartile, and maxi-
mum values [51], can display the variations between fea-
ture values and their labels. As shown In Figures 7 and
8, the box plots for some samples from the power system
and UNSW-NB15 datasets are presented, whereby there are
clear variations between normal and abnormal feature val-
ues and their labels that extracted from the ICA technique.
This is because the technique can find differences between
non-linear and non-normal data distributions in which are
the same characteristics of the power system and network
data [6], [16].

D. EVALUATION OF MHMM ON POWER SYSTEMS
AND NETWORK DATA
The performance of the proposed MHMM threat intelli-
gence mechanism is assessed on the power system and
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FIGURE 7. Box plots of features selected from power system dataset.

FIGURE 8. Box plots of features selected from UNSW dataset.

TABLE 2. Estimation of overall performances of six mechanisms on both
datasets.

UNSW-NB15 datasets in terms of DR, accuracy, and FPR.
The mechanism is compared with five peer techniques,
named Cart [52], KNN [53], SVM [54], RF [55] and
OGM [16] for demonstrating its effectiveness in identifying
cyber adversaries that attempt to exploit Industry 4.0 systems
within their sensors, actuators and network activities, as listed
in Table 2. Moreover, the Receiver Operating Characteristics
(ROC) curves that display the relation between the DR and
FAR are presented in Figures 9 and 10 to clarify the inherent
process of implementing the mechanisms.

It is obvious that the performance of the proposed MHMM
technique is better than the other techniques, when applied
to the two datasets. On the power systems dataset, the

FIGURE 9. ROC curves of power system dataset compared five techniques
with MHMM.

FIGURE 10. ROC curves of UNSW-NB15 dataset compared five techniques
with MHMM.

proposed mechanism gets the best outcome of a 96.23% DR
and 98.45% accuracy and the lowest FPR of 2.21% tech-
nique achieves the best output of a 97.28% DR and 2.72%
FAR, whereas the rest mechanisms attain on an average
of 93-96% DR, 94-97% accuracy and 6-3% FPR. Similarly,
on the UNSW-NB15 dataset, the proposed MHMM mecha-
nism produces better than others, where it obtains a 95.89%
DR, 96.32% accuracy and 3.82% FPR, whereby the others
get in an average of 88-94% DR, 90-95% accuracy and
8-4% FPR.

The proposed MHMM mechanism can efficiently recog-
nise different normal and abnormal records on both datasets.
In Table 3, when the number of instances used to train and
validate the mechanism increases (i.e., 100,000 to 300,000),
the DRs gradually improve by well-fitting the parameters of
BMM and HMM. On the power systems dataset, the mech-
anism can detect normal vectors with about a 98.05% DR
and 1.95% false negative rate. Moreover, it can discover
remote striping, reply, and data injection attacks that penetrate
physical systems in an average of 97.69-99.36%.

On the UNSW-NB15 dataset, the mechanism can iden-
tify normal instances with approximately a 95.68% DR and
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TABLE 3. Estimation of overall performances of six mechanisms on both
datasets.

4.32% false negative rate. Additionally, DoS, fuzzers, recon-
naissance, and shellcode abnormal events are detected in an
average of 90.75-99.64% DRs while the others are identified
in an average of 89.62-89.75% due to their variances that
are slightly similar to normal activities. But, these abnormal
events do not appear in real-productions systems with the
massive instances that found in the UNSW-NB15 dataset.
The proposed mechanism can detect different normal and
abnormal events using physical systems and network data that
can be collected in Industry 4.0 systems. Based on that, the
proposed MHMM mechanism can precisely model and clas-
sify the normal and attack states of real Industry 4.0 systems,
as explained below.

E. DISCUSSION
The empirical results of the proposed MHHH mechanism,
compared with the peer mechanisms, reveal its superiority
in detecting different legitimate and malicious vectors on
both physical and network data. The underlying reasons for
this performance are twofold: the use of the ICA technique
extracting for relevant features; and the utilisation of BMM
for fitting multivariate time series physical and network data
to construct threat intelligence by the HMM. Since phys-
ical and network data are not linearly and normally rep-
resented as presented in the boxplots of Figures 7 and 8,
extracting important features demands the ICA technique
which can deal with non-linear and non-Gaussian data
distributions.

The ICA technique reduced the number of features into
lower dimensional space (i.e., nine features from each
dataset) with higher variances between them, including the
impending characteristics of legitimate and attack observa-
tions. This improves the performance of MHMM. Using the
experimental equipment, it takes approximately 55 seconds
for processing 10,000 vectors if ICA is used, an improvement
over the approximately 87 seconds it takes using the entire
features of each dataset. Comparing our mechanism with

the five compelling ones, it is observed that our mechanism
runs faster than them with about 6-15 seconds for every
10,000 vectors, due to the complexity of building their poten-
tial process explained below.

In the HMM mechanism, fitting data distributions using
the BMM solves the unbounded problem of mixture models,
where the feature values are specified into a specific range
that estimated based on the actual values of features into a
finite range of ] − ∞,∞[. This enables the elimination of
noise occurring in the lower and upper boundaries of mixture
distribuends; thus, while estimating normal and suspicious
states of vectors using the HMM, it improves computing
different posterior probabilities of these states. Moreover,
the posterior boundaries of each state can be used to be
the threshold that discriminates between normal posterior
probabilities and any abnormal ones. As a result, the MHMM
threat intelligence could tackle the complexity of fitting
and modelling Industry 4.0’s data extracted from physical,
sensor/actuator, control and network layers using estimating
HMM parameters based on the BMM parameters in real-time
for each specific time window.

The other mechanisms tested can not accurately fit and
model the data produced by Industry 4.0 systems, like
the MHMM. Additionally, their capability for recognising
normal and attack categories are lower than the proposed
methodology. There are several reasons for this, based on
their underlyingmathematical design. TheCart andRFmech-
anisms classify normal and attack data based on creating a
recursive binary splitting method that differentiates between
normal and attack values. These values could be relatively
similar to mimicry attacks that try to mimic normal activi-
ties. The variations in the posterior probabilities of MHMM
improves the detection accuracy for different attack cate-
gories compared with this mechanism. SVM requires an
accurate determination of choosing a kernel function and
its parameters. This leads to issues of over-fitting that can
occur when learning normal observations that dynamically
change over time. KNN and OGM cannot perfectly handle
soft boundaries of training data, and therefore solved this
challenge by estimating the actual feature vector boundaries
using the BMM.

Despite some abnormal events, in particular backdoors and
worms, analysis of UNSW-NB15 dataset are identified with
lowDRs in some runs usingMHHM, and the results are better
than the competing algorithms. This is due to the fact that
this dataset was generated in a complex simulated environ-
ment that produces large numbers of abnormal traces that are
unlikely to be found in real systems or other datasets. This
also shows the proposed mechanism could effectively detect
different abnormal activities in real Industry 4.0 environ-
ments compared with the peer machine learning techniques.
It is important to note that there are no datasets specifically
for Industry 4.0 systems, and the testing mechanisms are
based on two benchmark datasets: power systems of physical
data (i.e., sensors/actuators and devices) and UNSW-NB15 of
network traffic that include data that should be collected from
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any Industry 4.0 environment. This limitation highlights the
need for the development of datasets encompassing different
Industry 4.0 systems, including the connection of physical
systems, IoT solutions, and both Fog and Cloud computing
paradigms. Such datasets are needed to improve the fidelity
of threat intelligence and intrusion detection systems.

Based on the above discussion, the MHMM technique
has several advantages that enable monitoring and detecting
threats that attempt to exploit Fog and Cloud computing.
MHMM technique solves the main problem of anomaly
detection by learning only on normal data, thus it can pro-
fessionally detect both known and zero-day attacks. More-
over, it solves the problem inherent in rule-based detection
systems in the requirement to develop and deploy signatures
for all attack types. Instead, the MHMM technique estimates
the lower and upper posterior probabilities of normal and
existing attacks, bypassing the need for any signature. The
MHMM technique is also designed to fit multivariate time
series data that dynamically change over time, which is the
norm of Industry 4.0 systems. It does this by accurately
fitting data boundaries using the BMM, thus this improves
estimating the posterior boundaries of normal and attack
activities, especially mimicry attacks that cannot effectively
detect using peermachine learning. However, this mechanism
requires a huge number of normal and attack samples in
order to accurately estimate the BMM and HMM parameters.
It also needs a new function that enables running algorithm
for adjusting the sliding window to be implemented real-
world applications, as it is proven its capability of discovering
physical and network attacks on both offline datasets.

VI. CONCLUSION
This paper has proposed a Beta Mixture-Hidden Markov
Mechanism (MHMM) for designing threat intelligence that
monitors and recognises cyber-attacks from Industry 4.0 sys-
tems. Themechanismwas designed based onBMMfor fitting
physical and network data for addressing the problem of
accurately estimating data boundaries of normal and attack
data using HMM. It learns on normal and attacks data for
discovering the posterior boundaries of normal and attack
types, therefore it solves the issues of anomaly and signature-
based detection. The performance of the proposed mecha-
nism significantly improves while reducing and extracting
important features through the ICA technique. This mecha-
nism can competently discover physical and network attacks
using the physical power system and UNSW-NB15 datasets.
Its performance outnumbers five peer techniques in terms of
detection rates, false positive rates and processing times deep-
ening on its potential process of utilising BMM as the input
of HMM for computing the posterior boundaries of normal
and abnormal observations. Based on this, in future, we will
extend this work for applying the mechanism on real Industry
4.0 systems that are in an early stage in the cybersecurity
domain with architecture and data collections that validate
threat intelligence, intrusion detection, and forensic systems
in real-world applications.
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